Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 3 Zahlen und Rechnen
  4. 3.1 Natürliche Zahlen
  5. 3.1.1 Zahlbegriff; Zahldarstellungen
  6. Natürliche Zahlen, axiomatischer Aufbau

Natürliche Zahlen, axiomatischer Aufbau

Neben der naiven, von Mengenvorstellungen und Anordnungen ausgehenden Gewinnung der natürlichen Zahlen oder einem streng mengentheoretisch fundierten Vorgehen ist auch ein sogenannter axiomatischer Aufbau der natürlichen Zahlen möglich. Dabei wird von Grundsätzen ausgegangen, die in ihrer Gesamtheit einleuchtend, vollständig, zueinander widerspruchsfrei und voneinander unabhängig sein müssen. Diese bilden dann ein Axiomensystem.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Neben der naiven, von Mengenvorstellungen und Anordnungen ausgehenden Gewinnung der natürlichen Zahlen oder einem streng mengentheoretisch fundierten Vorgehen ist auch ein sogenannter axiomatischer Aufbau der natürlichen Zahlen (und darauf fußend aller anderen Zahlenbereiche) möglich. Dabei wird von Grundsätzen (Axiomen) ausgegangen, die in ihrer Gesamtheit einleuchtend, vollständig, zueinander widerspruchsfrei und voneinander unabhängig sein müssen. Diese bilden dann ein Axiomensystem.

Ein solches Vorgehen benutzte bereits EUKLID (griechischer Mathematiker um 300 v. Chr.), der in seinem Werk „Elemente“ einen streng wissenschaftlichen, systematischen Aufbau der Geometrie entwickelte, an dessen Spitze er Definitionen, Axiome und Postulate stellte.

Für die natürlichen Zahlen gab der italienische Mathematiker GIUSEPPE PEANO (1858 bis 1932) folgendes (später nach ihm benanntes) Axiomensystem an:

  1. 1 ist eine natürliche Zahl.
  2. Jede natürliche Zahl hat genau einen Nachfolger.
  3. 1 ist nicht Nachfolger einer natürlichen Zahl.
  4. Jede natürliche Zahl ist Nachfolger höchstens einer natürlichen Zahl.
  5. Wenn eine Aussage über natürliche Zahlen für 1 richtig ist, und wenn aus ihrer Richtigkeit für irgendeine natürliche Zahl n ihre Richtigkeit für den Nachfolger n' folgt, so gilt die Aussage für alle natürlichen Zahlen.

Aus diesen Axiomen lassen sich alle Eigenschaften der natürlichen Zahlen und alle Gesetze für das Rechnen mit ihnen ableiten.

Anmerkungen:

  • Nach dem obigen peanoschen Axiomensystem gehört die Zahl 0 nicht zu den natürlichen Zahlen. Will man sie dazurechnen, muss man in den Axiomen 1, 3 und 5 die Zahl 1 durch die Zahl 0 ersetzen.
  • Das 5. Axiom ist das Prinzip der vollständigen Induktion.
Lernhelfer (Duden Learnattack GmbH): "Natürliche Zahlen, axiomatischer Aufbau." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/natuerliche-zahlen-axiomatischer-aufbau (Abgerufen: 20. May 2025, 20:42 UTC)

Suche nach passenden Schlagwörtern

  • Axiom
  • Positionssystem
  • peanosches Axiomensystem
  • natürliche Zahlen
  • Axiomensystem
  • Null
  • Vorgänger
  • Beweisverfahren
  • Beweis
  • Euklid
  • vollständige Induktion
  • Peano
  • Nachfolger
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Logische Operationen mit Aussagen

Aussagen können negiert oder durch aussagenlogische Operationen (Konjunktion, Disjunktion, Alternative, Implikation, Äquivalenz) miteinander verknüpft werden.
Der Wahrheitswert einer negierten oder zusammengesetzten Aussage hängt dabei ausschließlich vom Wahrheitswert der Ausgangsaussage bzw. der verknüpften Teilaussagen ab.

Axiomensysteme

Durch Axiomensysteme werden mathematische Begriffe mithilfe einer Reihe von einfachen Festlegungen, die man Axiome nennt, charakterisiert.
An ein mathematisches Axiomensystem werden eine Reihe von Bedingungen gestellt. So sollte es z.B. widerspruchsfrei sein.

Beweisverfahren der vollständigen Induktion

Das Verfahren der vollständigen Induktion hängt eng zusammen mit der Menge der natürlichen Zahlen bzw. mit Teilmengen natürlicher Zahlen. Es ist immer dann anwendbar, wenn man auf Aussagen trifft, die für alle natürlichen Zahlen gelten, also die die folgende Struktur aufweisen:

  • Für alle natürlichen Zahlen n       ( m i t       n ≥ n 0 ) gilt H ( n ) .

Friedrich Ludwig Gottlob Frege

* 08.11.1848 Wismar
† 26.07.1925 Bad Kleinen

GOTTLOB FREGE arbeitete an der Universität Jena. Er war maßgeblich an der Schaffung von Grundlagen der Logik beteiligt, wobei er an Ideen des englischen Mathematikers GEORGE BOOLE anknüpfte. FREGES Ideen wiederum waren Grundlage für GIUSEPPE PEANO und BERTRAND RUSSELL.

Earl of Bertrand Arthur William Russell

* 18. Mai 1872 Ravenscroft Trellek, Monmouthshire, Wales
† 2. Februar 1970 Penrhyndeudraeth Merioneth, Wales

BERTRAND RUSSELL ist Mitbegründer der modernen mathematischen Logik. Im Jahre 1901 fand er die nach ihm benannte Antinomie der Menge aller Mengen, die sich nicht selbst enthalten.
RUSSELL veröffentlichte zudem zahlreiche philosophische Schriften und Essays.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025