Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 9 Stochastik
  4. 9.3 Wahrscheinlichkeitsrechnung
  5. 9.3.3 Mehrstufige Zufallsversuche
  6. Pfadregeln

Pfadregeln

Die Pfadregeln gestatten, (anhand des entsprechenden Baumdiagramms) die Wahrscheinlichkeit von Ergebnissen bzw. Ereignissen bei mehrstufigen Zufallsversuchen zu berechnen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Mithilfe der Pfadregeln lassen sich die Wahrscheinlichkeiten mehrstufiger Zufallsversuche (Zufallsexperimente) berechnen. Als Hilfsmittel nutzt man hierbei Baumdiagramme, in denen die einzelnen Wegstücke mit den Wahrscheinlichkeiten der Ergebnisse des entsprechenden Teilvorgangs beschriftet sind.

Beispiel:
In einer Urne befinden sich fünf blaue und zwei weiße Kugeln. Es werden (ohne Zurücklegen) nacheinander drei Kugeln gezogen.
a) Es ist die Wahrscheinlichkeit dafür zu ermitteln, dass drei blaue Kugeln gezogen werden.
b) Wie groß ist die Wahrscheinlichkeit, dass sich unter den gezogenen Kugeln genau eine weiße befindet?

Das folgende Bild zeigt das Baumdiagramm für diesen dreistufigen Zufallsversuch mit den entsprechenden Wahrscheinlichkeiten.

Bild

Wir betrachten zunächst die Wahrscheinlichkeit für ein mögliches Ergebnis des Zufallsversuchs.

Baumdiagramm für einen dreistufigen Zufallsversuch

 

1. Pfadregel (Produktregel):
Die Wahrscheinlichkeit eines Ergebnisses in einem mehrstufigen Vorgang ist gleich dem Produkt der Wahrscheinlichkeiten längs des Pfades, der diesem Ergebnis entspricht.

 

Diese Regel gestattet uns die Lösung der Teilaufgabe a). Es ist (grüner Pfad):
  P ( { b b b } ) = 5 7 ⋅ 4 6 ⋅ 3 5 = 2 7
Auch die Wahrscheinlichkeit, drei weiße Kugeln zu ziehen, ließe sich mithilfe des Baumdiagramms berechnen:
  P ( { w w w } ) = 2 7 ⋅ 1 6 ⋅ 0 = 0
(Das zu diesem Pfad in Bild 1 gestrichelte Teilstück mit der Wahrscheinlichkeit 0 wird beim Zeichnen des Baumdiagramms im Allgemeinen weggelassen.)

Für die Berechnung der Wahrscheinlichkeit eines Ereignisses sind alle für dieses Ereignis günstigen Pfade (im Baumdiagramm rot markiert) zu berücksichtigen.

 

2. Pfadregel (Summenregel):
Die Wahrscheinlichkeit eines Ereignisses in einem mehrstufigen Vorgang ist gleich der Summe der Wahrscheinlichkeiten der für dieses Ereignis günstigen Pfade.

 

Somit gilt für die Wahrscheinlichkeit, genau eine weiße Kugel (d. h. eine weiße Kugel und zwei blaue Kugeln) zu ziehen:
  P ( { b b w } ,   { b w b } ,   { w b b } ) = 5 7 ⋅ 4 6 ⋅ 2 5 + 5 7 ⋅ 2 6 ⋅ 4 5 + 2 7 ⋅ 5 6 ⋅ 4 5 = 4 7

 

Lernhelfer (Duden Learnattack GmbH): "Pfadregeln." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/pfadregeln (Abgerufen: 09. June 2025, 17:29 UTC)

Suche nach passenden Schlagwörtern

  • Padregeln
  • Produktregel
  • Baumdiagramm
  • Wahrscheinlichkeit
  • Summenregel
  • Pfad
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Urnenmodell

Viele Probleme der klassischen Wahrscheinlichkeitsrechnung lassen sich mithilfe des Urnenmodells veranschaulichen (simulieren). Dazu wird angenommen, dass sich in einem Gefäß (der Urne) eine bestimmte Anzahl (unterscheidbarer) Kugeln befinden und dass aus diesem Gefäß eine entsprechende Anzahl von Kugeln nacheinander bzw. auf einen Griff gezogen werden.

Vierfeldertafel

Eine Vierfeldertafel ist ein Hilfsmittel, um die gleichzeitige Beobachtung zweier Ereignisse E und F zu erfassen. Auf ihrer Grundlage ist es möglich zu entscheiden, ob die betrachteten Ereignisse voneinander abhängig oder unabhängig sind.

Wahrscheinlichkeitsverteilung

Zufallsgrößen X sind dadurch gekennzeichnet, dass sie verschiedene Werte annehmen können, wobei jeder dieser Werte ein zufälliges Ereignis darstellt und mit einer bestimmten Wahrscheinlichkeit auftritt.
Die Funktion, die jedem Wert von X die Wahrscheinlichkeit für sein Eintreten zuordnet, wird Verteilung der Zufallsgröße bzw. Wahrscheinlichkeitsverteilung genannt.

Wissenstest - Kenngrößen und Wahrscheinlichkeit

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Kenngrößen und Wahrscheinlichkeit".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Zufallsgrößen

Eine Zufallsgröße X ist dadurch charakterisiert, dass sie bei unter gleichen Bedingungen durchgeführten Versuchen verschiedene Werte annehmen kann. Man unterscheidet zwischen diskreten und stetigen (kontinuierlichen) Zufallsgrößen.
Während bei einer diskreten Zufallsgröße in einem Intervall nur endlich viele Werte x 1 ,   x 2   ...   x n möglich sind, kann eine stetige Zufallsgröße beliebig (unendlich) viele Werte annehmen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025