Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 9 Stochastik
  4. 9.3 Wahrscheinlichkeitsrechnung
  5. 9.3.3 Mehrstufige Zufallsversuche
  6. Pfadregeln

Pfadregeln

Die Pfadregeln gestatten, (anhand des entsprechenden Baumdiagramms) die Wahrscheinlichkeit von Ergebnissen bzw. Ereignissen bei mehrstufigen Zufallsversuchen zu berechnen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Mithilfe der Pfadregeln lassen sich die Wahrscheinlichkeiten mehrstufiger Zufallsversuche (Zufallsexperimente) berechnen. Als Hilfsmittel nutzt man hierbei Baumdiagramme, in denen die einzelnen Wegstücke mit den Wahrscheinlichkeiten der Ergebnisse des entsprechenden Teilvorgangs beschriftet sind.

Beispiel:
In einer Urne befinden sich fünf blaue und zwei weiße Kugeln. Es werden (ohne Zurücklegen) nacheinander drei Kugeln gezogen.
a) Es ist die Wahrscheinlichkeit dafür zu ermitteln, dass drei blaue Kugeln gezogen werden.
b) Wie groß ist die Wahrscheinlichkeit, dass sich unter den gezogenen Kugeln genau eine weiße befindet?

Das folgende Bild zeigt das Baumdiagramm für diesen dreistufigen Zufallsversuch mit den entsprechenden Wahrscheinlichkeiten.

Bild

Wir betrachten zunächst die Wahrscheinlichkeit für ein mögliches Ergebnis des Zufallsversuchs.

Baumdiagramm für einen dreistufigen Zufallsversuch

 

1. Pfadregel (Produktregel):
Die Wahrscheinlichkeit eines Ergebnisses in einem mehrstufigen Vorgang ist gleich dem Produkt der Wahrscheinlichkeiten längs des Pfades, der diesem Ergebnis entspricht.

 

Diese Regel gestattet uns die Lösung der Teilaufgabe a). Es ist (grüner Pfad):
  P ( { b b b } ) = 5 7 ⋅ 4 6 ⋅ 3 5 = 2 7
Auch die Wahrscheinlichkeit, drei weiße Kugeln zu ziehen, ließe sich mithilfe des Baumdiagramms berechnen:
  P ( { w w w } ) = 2 7 ⋅ 1 6 ⋅ 0 = 0
(Das zu diesem Pfad in Bild 1 gestrichelte Teilstück mit der Wahrscheinlichkeit 0 wird beim Zeichnen des Baumdiagramms im Allgemeinen weggelassen.)

Für die Berechnung der Wahrscheinlichkeit eines Ereignisses sind alle für dieses Ereignis günstigen Pfade (im Baumdiagramm rot markiert) zu berücksichtigen.

 

2. Pfadregel (Summenregel):
Die Wahrscheinlichkeit eines Ereignisses in einem mehrstufigen Vorgang ist gleich der Summe der Wahrscheinlichkeiten der für dieses Ereignis günstigen Pfade.

 

Somit gilt für die Wahrscheinlichkeit, genau eine weiße Kugel (d. h. eine weiße Kugel und zwei blaue Kugeln) zu ziehen:
  P ( { b b w } ,   { b w b } ,   { w b b } ) = 5 7 ⋅ 4 6 ⋅ 2 5 + 5 7 ⋅ 2 6 ⋅ 4 5 + 2 7 ⋅ 5 6 ⋅ 4 5 = 4 7

 

Lernhelfer (Duden Learnattack GmbH): "Pfadregeln." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/pfadregeln (Abgerufen: 30. June 2025, 01:22 UTC)

Suche nach passenden Schlagwörtern

  • Padregeln
  • Produktregel
  • Baumdiagramm
  • Wahrscheinlichkeit
  • Summenregel
  • Pfad
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Baumdiagramme

Mithilfe von Baumdiagrammen lassen sich Vörgänge, die aus mehreren Stufen (Teilvorgängen) bestehen, veranschaulichen. Das betrifft sowohl kombinatorische Probleme als auch mehrstufige Zufallsexperimente (Zufallsversuche).

Ereignisse

Unter einem Ereignis wird der Ausgang eines Zufallsexperiments (Zufallsversuchs) verstanden.
Spezielle Ereignisse sind das sichere Ereignis, das unmögliche Ereignis sowie die sogenannten Elementarereignisse (atomaren Ereignisse).

Andrej Nikolajewitsch Kolmogorow

ANDREJ NIKOLAJEWITSCH KOLMOGOROW (1903 bis 1987), sowjetischer (russsischer) Mathematiker
* 25. April 1903 Tambow (Russland)
† 20. Oktober 1987 Moskau

ANDREJ NIKOLAJEWITSCH KOLMOGOROW zählt zu den bedeutendsten Mathematikern des 20. Jahrhunderts. Er leistete fundamentale Beiträge auf nahezu allen Teilgebieten der Mathematik.
Besonders intensiv arbeitete KOLMOGOROW auf dem Gebiet der Wahrscheinlichkeitsrechnung und der mathematischen Statistik, speziell die axiomatische Grundlegung des Wahrscheinlichkeitsbegriffs geht auf ihn zurück.

Pierre Laplace

PIERRE SIMON DE LAPLACE (1749 bis 1827), französischer Mathematiker und Astronom
* 28. März 1749 Beaumont-en-Auge
† 5. März 1827 Paris

PIERRE SIMON DE LAPLACE lieferte bedeutende Beiträge auf den Gebieten der höheren Analysis, der Wahrscheinlichkeitsrechnung sowie der Himmelsmechanik. So fasste er beispielsweise in seinem 1812 erschienenen Werk „Théorie analytique des probabilités“ das damalige Wissen zur Wahrscheinlichkeitsrechnung zusammen.

Pseudozufallszahlen

Die Simulation zufälliger Vorgänge aus der Praxis ist oft sehr mühsam und zeitaufwendig. Das gilt besonders auch für das Erzeugen von Zufallszahlen und das Arbeiten mit diesen Zahlen (ggf. unter Verwendung entsprechender Tabellen).
Heute ist es möglich, von Computern erzeugte Zufallszahlen, sogenannte Pseudozufallszahlen, zu nutzen. Grundlage für deren Erzeugung ist ein Algorithmus, der Ziffernfolgen liefert, die annähernd dieselben Eigenschaften haben wie echte Zufallszahlen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025