Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 7 Planimetrie
  4. 7.9 Kreis
  5. 7.9.3 Inkreis und Umkreis von Vielecken
  6. Sehnenviereck

Sehnenviereck

Besitzt ein Viereck einen Umkreis, so nennt man es Sehnenviereck.
Alle gleichschenkligen Trapeze, alle Rechtecke und damit auch alle Quadrate besitzen einen Umkreis.
Unter dem Umkreis eines n-Ecks versteht man den Kreis, der durch alle Eckpunkte des n-Ecks geht. Die Seiten des n-Ecks sind Sehnen des Umkreises.
Für alle Sehnenvierecke gilt folgender Satz:
Die Summe gegenüberliegender Winkel im Sehnenviereck ist 180°.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Besitzt ein Viereck einen Umkreis, so nennt man es Sehnenviereck (Bild 1).

Alle gleichschenkligen Trapeze, alle Rechtecke und damit auch alle Quadrate besitzen einen Umkreis.
Unter dem Umkreis eines n-Ecks versteht man den Kreis, der durch alle Eckpunkte des n-Ecks geht. Die Seiten des n-Ecks sind Sehnen des Umkreises.
Für alle Sehnenvierecke gilt folgender Satz:

Die Summe gegenüberliegender Winkel im Sehnenviereck ist 180°.

  • Sehnenvierecke

Bewiesen wird der Satz für den Fall, dass der Mittelpunkt des Umkreises innerhalb des Sehnenvierecks liegt (Bild 2).

Voraussetzung:
A, B, C und D liegen auf einem Kreis um M, d. h.
M A ¯ = M B ¯ = M C ¯ = M D ¯ = r

Behauptung:
∢ D A B + ∢ B C D = ∢ A B C + ∢ C D A = 180 °

Beweis:
In den gleichschenkligen Dreiecken ABM, BCM, CDM und DAM sind die Basiswinkel paarweise zueinander kongruent.
Dann ist ∢ D A B + ∢ B C D = α + β + γ + δ =     S und auch ∢ A B C + ∢ C D A = α + β + γ + δ =   S .
Da die Innenwinkelsumme im Viereck 360 ° ist, gilt 2 S = 360 ° , also  S = 180 ° . (w. z. b. w.)

  • Beweisfigur

Für die anderen beiden Fälle (M liegt auf einer Seite des Sehnenvierecks oder außerhalb des Sehnenvierecks) verläuft der Beweis analog.

Alle regelmäßigen Vielecke besitzen einen Umkreis, was häufig zu ihrer Konstruktion verwendet wird.
In einen Umkreis gezeichnete Vielecke heißen einbeschriebene Vielecke.

Lernhelfer (Duden Learnattack GmbH): "Sehnenviereck." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/sehnenviereck (Abgerufen: 20. May 2025, 23:22 UTC)

Suche nach passenden Schlagwörtern

  • Rechteck
  • Sehne
  • Viereck
  • Berechnung
  • Sehnenviereck
  • Umkreis
  • einbeschrieben
  • Trapez
  • Quadrat
  • Rechenbeispiel
  • Excel-Beispiel
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Wissenstest - Kreis

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Kreis".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Drachenviereck

Ein Drachenviereck ist ein Viereck, in dem jeweils die beiden Seiten gleich lang sind, die einen Eckpunkt auf der Symmetrieachse gemeinsam haben. Die Diagonalen stehen in einem (gleichschenkligen) Drachenviereck senkrecht aufeinander. Eine von ihnen ist die Symmetrieachse.

Parallelogramm

Ein Viereck, dessen gegenüberliegende Seiten parallel sind, heißt Parallelogramm. Die gegenüberliegenden Seiten sind demzufolge gleich lang. Die Diagonalen in einem Parallelogramm halbieren einander. Die gegenüberliegenden Winkel sind gleich groß.

Quadrat, allgemein

Ein Viereck, bei dem je zwei benachbarte Seiten zueinander senkrecht und gleich lang sind, heißt Quadrat.
Gleichwertig sind auch folgende Aussagen:

  • Ein Quadrat ist ein Rechteck mit gleich langen Seiten.
  • Ein Quadrat ist eine Raute (ein Rhombus) mit rechten Winkeln.

Das Quadrat ist ein regelmäßiges Viereck.

Raute

Ein Viereck mit vier gleich langen Seiten heißt Raute (Rhombus). Neben den Eigenschaften eines Parallelogramms (Parallelität der gegenüberliegenden Seiten) besitzt die Raute folgende Merkmale:
1. Die Seiten sind gleich lang.
2. Die Diagonalen stehen senkrecht aufeinander.
3. Die Diagonalen halbieren die Innenwinkel.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025