Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 8 Spezielle Relativitätstheorie
  4. 8.4 Relativistische Dynamik
  5. 8.4.0 Relativistische Dynamik
  6. Invariante Größen in der klassischen Physik und in der speziellen Relativitätstheorie

Invariante Größen in der klassischen Physik und in der speziellen Relativitätstheorie

Es gibt in der klassischen Physik und in der Relativitätstheorie eine Reihe von Größen, die ihren Wert bzw. ihre Form nicht ändern, wenn man von einem Inertialsystem in ein anderes übergeht. Solche Größen werden als invariante Größen bezeichnet. Auch für Gesetze gibt es eine Invarianz. Die Bestimmung von invarianten Größen bzw. Gesetzen trägt dazu bei, physikalische Phänomene und Zusammenhänge besser zu verstehen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Was heißt Invarianz?

So ist z.B. die Masse eines Körpers in der klassischen Physik eine invariante Größe, denn ihr Wert bleibt stets gleich, unabhängig von dem Bezugssystem, in dem man sich befindet. In der speziellen Relativitätstheorie dagegen ist die Masse abhängig von der Geschwindigkeit, mit der sich der Körper bewegt. Sie ist im Rahmen dieser Theorie keine invariante, sondern eine relative Größe.
Im Unterschied dazu ist z.B. die Beschleunigung sowohl in der klassischen Physik als auch in der Relativitätstheorie eine invariante Größe, ändert also ihren Wert nicht, wenn das Bezugssystem gewechselt wird.

Beispiele für invariante und nicht invariante Größen

In der nachfolgenden Übersicht sind ausgewählte Größen zusammengestellt, die teils in der klassischen Physik, teils in der Relativitätstheorie invariant sind, wobei wir stets von Inertialsystemen (unbeschleunigten Bezugssystemen) ausgehen.

physikalische Größeklassische Mechanikspezielle Relativitätstheorie
Zeitinvariantnicht invariant (relativ)
Zeitdauer (Zeitintervall)invariantnicht invariant (relativ)
Weginvariantinvariant
Länge eines Körpers
(Abstand zweier Punkte)
invariantnicht invariant (relativ)
Geschwindigkeitnicht invariant (relativ)nicht invariant (relativ)
Änderung der Geschwindigkeitinvariantinvariant
Beschleunigunginvariantinvariant
Masseinvariantnicht invariant (relativ)
Impulsnicht invariant (relativ)nicht invariant (relativ)
kinetische Energienicht invariant (relativ)nicht invariant (relativ)

Sowohl in der klasischen Physik als auch in der speziellen Relativitätstheorie sind auch der Energieerhaltungssatz und der Impulserhaltungssatz invariant.

Lernhelfer (Duden Learnattack GmbH): "Invariante Größen in der klassischen Physik und in der speziellen Relativitätstheorie." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik-abitur/artikel/invariante-groessen-der-klassischen-physik-und-der-speziellen (Abgerufen: 24. May 2025, 03:38 UTC)

Suche nach passenden Schlagwörtern

  • Invarianz
  • Zeitdauer
  • Weg
  • Zeit
  • spezielle Relativitätstheorie
  • Geschwindigkeit
  • klassische Physik
  • Masse
  • invariante Größen
  • Beschleunigung
  • kinetische Energie
  • Impuls
  • Zeitintervall
  • Länge
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Allgemeine Relativitätstheorie im Original

ALBERT EINSTEIN, der 1905 die spezielle Relativitätstheorie und 1915 die allgemeine Relativitätstheorie veröffentlichte, stellte selbst die wichtigste Inhalte dieser Theorien in vielen Vorträgen und Veröffentlichungen dar. Dabei versuchte er die Grundgedanken der neuen Theorien in möglichst einfacher und gut überschaubarer Weise zu formulieren. Ein Beispiel dafür sind die nachfolgenden Auszüge aus einer Arbeit von ihm, die 1916 unter dem Titel „Über die spezielle und die allgemeine Relativitätstheorie“ veröffentlicht wurde.

Äquivalenz von Masse und Energie

ALBERT EINSTEIN formulierte in seiner berühmten Arbeit zur speziellen Relativitätstheorie im Jahre 1905: „Die Masse eines Körpers ist ein Maß für dessen Energiegehalt“. Er stellte fest, dass Masse und Energie äquivalente Größen sind und zwischen diesen Größen der fundamentale Zusammenhang E = m ⋅ c 2 existiert. Diese Gleichung ist die Grundlage für das Verständnis der Energiefreisetzung durch Kernspaltung und Kernfusion sowie vieler weiterer physikalischer Prozesse.

Albert Einstein

* 14.03.1879 in Ulm
† 18.04.1955 in Princeton (USA)

Er war einer der bedeutendsten Physiker der Geschichte und der Begründer der Relativitätstheorie, die zu einer völligen Veränderung des physikalischen Weltbildes führte. Darüber hinaus erbrachte er grundlegende Arbeiten auf vielen Gebieten der Physik. Insbesondere deutete er den lichtelektrischen Effekt und war damit einer der Mitbegründer der Quantentheorie. Hervorzuheben ist sein Eintreten für Humanität und eine verantwortungsbewusste Nutzung physikalischer Erkenntnisse.

Addition von Geschwindigkeiten

Während sich in der klassischen Physik bei gleich gerichteten Bewegungen die Beträge der Geschwindigkeiten addieren, gilt für die relativistische Addition von Geschwindigkeiten ein etwa komplizierterer Zusammenhang:
u = u ' + v 1 + u ' ⋅ v c 2
Die resultierende Geschwindigkeit ist entsprechend einer Grundaussage der speziellen Relativitätstheorie immer kleiner als die Vakuumlichtgeschwindigkeit.

Grundlegende Prinzipien und Bedeutung der ART

Die spezielle Relativitätstheorie bezieht sich auf Inertialsysteme. Der Einfluss der Gravitation wird ausgeblendet. In Verallgemeinerung seiner speziellen Relativitätstheorie auf beliebige Bezugssysteme unter Einschluss von Gravitationswirkungen entwickelte ALBERT EINSTEIN die allgemeine Relativitätstheorie, die er 1916 veröffentlichte. Sie begründet neue Vorstellungen über Raum und Zeit und ist z.B. die Grundlage aller modernen kosmologischen Theorien.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025