Direkt zum Inhalt

40 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Internationales Einheitensystem (SI)

Im Internationalen Einheitensystem (SI) sind Basiseinheiten für sieben physikalische Größen festgelegt. Die meisten anderen Einheiten lassen sich aus diesen sieben Einheiten ableiten. Die Festlegungen über Einheiten sind international vereinbart und werden von der Generalkonferenz für Maß und Gewicht (CGPM) getroffen. Als verbindliche Basiseinheiten wurden auf der 11. Generalkonferenz für Maß und Gewicht im Jahre 1960 folgende sieben Einheiten festgelegt:

  • das Meter (1 m) als die Einheit der Länge bzw. des Weges,
  • das Kilogramm (1 kg) als Einheit der Masse,
  • die Sekunde (1 s) als Einheit für die Zeit,
  • das Ampere (1 A) als Einheit für die Stromstärke,
  • das Kelvin (1 K) als Einheit für die Temperatur,
  • das Mol (1 mol) als Einheit für die Stoffmenge,
  • die Candela (1 cd) als Einheit für die Lichtstärke
Artikel lesen

Beschleunigungsarbeit

Beschleunigungsarbeit wird verrichtet, wenn ein Körper durch eine Kraft beschleunigt wird. Ist die Kraft konstant und wirkt sie in Richtung des Weges, so gilt für die Beschleunigungsarbeit:

W B = F ⋅ s                      F      beschleunigende Kraft                      s       zurückgelegter Weg

Die Beschleunigungsarbeit wird wie die anderen Arten mechanischer Arbeit in den Einheiten ein Newtonmeter (1 Nm) und ein Joule (1 J) gemessen.

Artikel lesen

Dichte von Stoffen

Die Dichte gibt an, welche Masse ein Kubikzentimeter Volumen eines Stoffes hat.

Formelzeichen: ρ
Einheiten:ein Gramm je Kubikzentimeter ( 1 g c m 3 )
 ein Kilogramm je Kubikmeter ( 1 k g m 3 )
 ein Gramm je Liter ( g l )

Die Dichte ist eine für jeden Stoff charakteristische Stoffkonstante. Sie ist abhängig von der Temperatur und vom Druck.

Artikel lesen

Wissenstest - Eigenschaften von Körpern und Stoffen

Zu den grundlegenden Eigenschaften von Körpern und Stoffen gehört es, ein Volumen und eine Masse zu haben. Kennzeichnend für jeden Stoff ist seine Dichte. Der Aufbau der Stoffe kann mit einem einfachen Teilchenmodell beschrieben werden. Getestet werden Kenntnisse über Grundeigenschaften von Körpern und Stoffen.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik- Eigenschaften von Körpern und Stoffen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Fallbeschleunigung

Die Beschleunigung, die bei einem frei fallenden Körper auftritt, wenn der Luftwiderstand vernachlässigbar klein ist, wird als Fallbeschleunigung g bezeichnet. Ihr mittlerer Wert für die Erdoberfläche beträgt 9,81 m/s².
Die Fallbeschleunigung ist abhängig von dem Ort, an dem man sich befindet. Sie wird deshalb auch als Ortsfaktor bezeichnet. Der Ortsfaktor gibt an, wie groß die Gewichtskraft eines Körpers je Kilogramm Masse am jeweiligen Ort ist. Es gilt g = 9,81 N/kg.

Artikel lesen

Gewichtskraft

Die Gewichtskraft gibt an, wie stark ein Körper auf eine Unterlage drückt oder an einer Aufhängung zieht.
 

Formelzeichen: F → G
Einheit:ein Newton (1 N)


Die Gewichtskraft kann mit der Gleichung F G = m ⋅ g berechnet werden.

Sie ist wie jede andere Kraft eine gerichtete (vektorielle) Größe. Im Unterschied zur Masse ist die Gewichtskraft vom Ort abhängig, an dem sich der betreffende Körper befindet.

Artikel lesen

Masse von Körpern

Die Masse gibt an, wie leicht oder schwer und wie träge ein Körper ist.
 

Formelzeichen:m
Einheit:ein Kilogramm (1 kg)


Die Masse eines Körpers ist im Unterschied zur Gewichtskraft an jedem beliebigen Ort gleich groß. Die Einheit der Masse ist eine Basiseinheit des Internationalen Einheitensystems (SI).

Artikel lesen

Newtonsches Grundgesetz

Zwischen Kraft, Masse und Beschleunigung gilt folgender Zusammenhang:
 

  F = m ⋅ a   
  Fauf den Körper einwirkende Kraft
  mMasse des Körpers
  aBeschleunigung des Körpers


Dieses Gesetz wurde von ISAAC NEWTON (1643-1727) entdeckt und beinhaltet einen grundlegenden Zusammenhang zwischen Kraft und Bewegung.

Artikel lesen

Volumen von Körpern

Das Volumen (der Rauminhalt) gibt an, wie viel Raum ein Körper einnimmt.

Formelzeichen:
Einheiten:
V
1 Kubikmeter (1 m 3 )
1 Liter (1 l)

Spezielle Volumeneinheiten sind ein Barrel (1 barrel) und eine Bruttoregistertonne (1 BRT).

Artikel lesen

Waagen

Waagen sind Messgeräte zur Bestimmung der Masse von Körpern. Es gibt sie in vielen unterschiedlichen Bauformen. Dabei werden verschiedene physikalische Gesetze und Zusammenhänge genutzt.
Wichtige Arten von Waagen sind Balkenwaagen, Einschalenwaagen, Schnellwaagen, Briefwaagen, Dezimalwaagen und elektronische Waagen.

Artikel lesen

Internationales Einheitensystem (SI)

Im Internationalen Einheitensystem (SI) sind Basiseinheiten für sieben physikalische Größen festgelegt. Die meisten anderen Einheiten lassen sich aus diesen sieben Einheiten ableiten. Die Festlegungen über Einheiten sind international vereinbart und werden von der Generalkonferenz für Maß und Gewicht (CGPM) getroffen. Als verbindliche Basiseinheiten wurden auf der 11. Generalkonferenz für Maß und Gewicht im Jahre 1960 folgende sieben Einheiten festgelegt:

  • das Meter (1 m) als die Einheit der Länge bzw. des Weges,
  • das Kilogramm (1 kg) als Einheit der Masse,
  • die Sekunde (1 s) als Einheit für die Zeit,
  • das Ampere (1 A) als Einheit für die Stromstärke,
  • das Kelvin (1 K) als Einheit für die Temperatur,
  • das Mol (1 mol) als Einheit für die Stoffmenge,
  • die Candela (1 cd) als Einheit für die Lichtstärke
Artikel lesen

Masse von Körpern

Die Masse gibt an, wie leicht oder schwer und wie träge eine Stoffprobe oder Stoffportion ist.

  • Formelzeichen: m
  • Einheit: ein Kilogramm (1 kg); ein Gramm (1g)

Die Masse einer Stoffprobe ist im Unterschied zur Gewichtskraft an jedem beliebigen Ort gleich groß. Die Einheit der Masse ist eine Basiseinheit des Internationalen Einheitensystems (SI).

Artikel lesen

Volumen von Körpern

Das Volumen (der Rauminhalt) gibt an, wie viel Raum eine Stoffprobe oder Stoffportion einnimmt.

Formelzeichen:
Einheiten:
V
1 Kubikmeter (1 m 3 )
1 Liter (1 l)

Spezielle Volumeneinheiten sind ein Barrel (1 barrel) und eine Bruttoregistertonne (1 BRT).

Artikel lesen

Dichte von Stoffen

Die Dichte gibt an, welche Masse ein Kubikzentimeter Volumen eines Stoffes hat.

Formelzeichen: ρ
Einheiten:ein Gramm je Kubikzentimeter ( 1 g c m 3 )
 ein Kilogramm je Kubikmeter ( 1 k g m 3 )
 ein Gramm je Liter ( g l )

Die Dichte ist eine für jeden Stoff charakteristische Stoffkonstante. Sie ist abhängig von der Temperatur und vom Druck.

Artikel lesen

Teilchenanzahl

Eine Stoffprobe beinhaltet eine bestimmte Anzahl von Teilchen.

Die Teilchenanzahl gibt an, wie viele Teilchen in einer Stoffprobe oder Stoffportion vorhanden sind.

Formelzeichen: N

Da jedes Teilchen eines Stoffes eine ganz bestimmte Masse hat, sind um so mehr Teilchen in einer Stoffportion vorhanden, je größer die Masse ist. Es gilt der Zusammenhang:

N ~ m

Artikel lesen

Dichte von Stoffen

Die Dichte gibt an, welche Masse ein Kubikzentimeter Volumen eines Stoffes hat.

Formelzeichen: ρ
Einheiten:ein Gramm je Kubikzentimeter ( 1 g c m 3 )
 ein Kilogramm je Kubikmeter ( 1 k g m 3 )
 ein Gramm je Liter ( g l )

Die Dichte ist eine für jeden Stoff charakteristische Stoffkonstante. Sie ist abhängig von der Temperatur und vom Druck.

Artikel lesen

Fallbeschleunigung oder Ortsfaktor

Die Beschleunigung, die bei einem frei fallenden Körper auftritt, wenn der Luftwiderstand vernachlässigbar klein ist, wird als Fallbeschleunigung g bezeichnet. Ihr mittlerer Wert für die Erdoberfläche beträgt 9,81 m/s².
Die Fallbeschleunigung ist abhängig von dem Ort, an dem man sich befindet. Sie wird deshalb auch als Ortsfaktor bezeichnet. Der Ortsfaktor gibt an, wie groß der Quotient aus der Gewichtskraft eines Körpers und seiner Masse am jeweiligen Ort ist. Es gilt g = 9,81 N/kg.

Artikel lesen

Gewichtskräfte

Die Gewichtskraft gibt an, wie stark ein Körper auf eine Unterlage drückt oder an einer Aufhängung zieht.

Formelzeichen: F → G
Einheit:ein Newton (1 N)


Die Gewichtskraft kann mit der Gleichung F → G = m ⋅ g → berechnet werden. Sie ist wie jede andere Kraft eine gerichtete (vektorielle) Größe. Im Unterschied zur Masse ist die Gewichtskraft vom Ort abhängig, an dem sich der betreffende Körper befindet.
Ein spezieller Fall liegt vor, wenn die Kraft auf eine Unterlage oder eine Aufhängung null ist. Dann spricht man von Schwerelosigkeit oder Gewichtslosigkeit.

Artikel lesen

Grundgesetz der Dynamik der Rotation

Bei der Translation gilt zwischen der Kraft F, der Masse m und der Beschleunigung a der grundlegende Zusammenhang F → = m ⋅ a → , das newtonsche Grundgesetz. Es wird auch als Grundgesetz der Dynamik der Translation bezeichnet. Für die Rotation starrer Körper gibt es ein analoges Gesetz, das Grundgesetz der Dynamik der Rotation. Es lautet:
Für den Zusammenhang zwischen dem an einem Körper angreifenden Drehmoment, seinem Trägheitsmoment und der Winkelbeschleunigung gilt die Gleichung:
M → = J ⋅ α → M Drehmoment J Trägheitsmoment α Winkelbeschleunigung

Artikel lesen

Geschichte und Entwicklung der Waage

Unter einer Waage versteht man ein mechanisches oder elektronisches Messinstrument, das zum Bestimmen von Massen benutzt wird. Waagen gibt es in verschiedensten Bauarten und Ausfertigungen, je nach Verwendung im Haushalt, in wissenschaftlichen Laboratorien, im Handel oder in Industriebetrieben.

Artikel lesen

relative Atommasse

Die relative Atommasse gibt an, wievielmal größer die Masse eines Atoms als die atomare Masseneinheit ist.

Artikel lesen

Molare Masse

Die molare Masse eines Stoffes gibt an, welche Masse die Stoffmenge von 1 mol (etwa 6 ⋅ 10 23 Teilchen) dieses Stoffes besitzt.

Formelzeichen:M
Einheit:Gramm je Mol ( g mol ; g/mol)
Artikel lesen

Mischungsrechnen

Das Mischen von Lösungen unterschiedlicher Konzentrationen oder das Verdünnen hoch konzentrierter Lösungen sind alltägliche Aufgaben z. B. in der chemischen Analytik oder in der chemischen Industrie. Dabei muss man schnell berechnen können, welche Konzentrationen die erhaltene Lösung besitzt oder welche Ausgangslösungen eingesetzt werden müssen, um zum gewünschten Ergebnis zu gelangen.

Artikel lesen

Internationales Einheitensystem (SI)

Im Internationalen Einheitensystem (SI) sind Basiseinheiten für sieben physikalische Größen festgelegt. Die meisten anderen Einheiten lassen sich aus diesen sieben Einheiten ableiten. Die Festlegungen über Einheiten sind international vereinbart und werden von der Generalkonferenz für Maß und Gewicht (CGPM) getroffen. Als verbindliche Basiseinheiten wurden auf der 11. Generalkonferenz für Maß und Gewicht im Jahre 1960 folgende sieben Einheiten festgelegt:

  • das Meter (1 m) als die Einheit der Länge bzw. des Weges,
  • das Kilogramm (1 kg) als Einheit der Masse,
  • die Sekunde (1 s) als Einheit für die Zeit,
  • das Ampere (1 A) als Einheit für die Stromstärke,
  • das Kelvin (1 K) als Einheit für die Temperatur,
  • das Mol (1 mol) als Einheit für die Stoffmenge,
  • die Candela (1 cd) als Einheit für die Lichtstärke
Artikel lesen

Das Mischungsrechnen

Das Mischen von Lösungen unterschiedlicher Konzentrationen oder das Verdünnen hoch konzentrierter Lösungen sind alltägliche Aufgaben z. B. in der chemischen Analytik oder in der chemischen Industrie. Dabei muss man schnell berechnen können, welche Konzentrationen die erhaltene Lösung besitzt oder welche Ausgangslösungen eingesetzt werden müssen, um zum gewünschten Ergebnis zu gelangen.

Seitennummerierung

  • Aktuelle Seite 1
  • Seite 2
  • Next Page

40 Suchergebnisse

Fächer
  • Chemie (13)
  • Kunst (1)
  • Mathematik (2)
  • Physik (24)
Klassen
  • 5. Klasse (21)
  • 6. Klasse (21)
  • 7. Klasse (21)
  • 8. Klasse (21)
  • 9. Klasse (21)
  • 10. Klasse (21)
  • Oberstufe/Abitur (20)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025