Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 2 Mechanik
  4. 2.5 Mechanik starrer Körper
  5. 2.5.3 Dynamik rotierender starrer Körper
  6. Grundgesetz der Dynamik der Rotation

Grundgesetz der Dynamik der Rotation

Bei der Translation gilt zwischen der Kraft F, der Masse m und der Beschleunigung a der grundlegende Zusammenhang F → = m ⋅ a → , das newtonsche Grundgesetz. Es wird auch als Grundgesetz der Dynamik der Translation bezeichnet. Für die Rotation starrer Körper gibt es ein analoges Gesetz, das Grundgesetz der Dynamik der Rotation. Es lautet:
Für den Zusammenhang zwischen dem an einem Körper angreifenden Drehmoment, seinem Trägheitsmoment und der Winkelbeschleunigung gilt die Gleichung:
M → = J ⋅ α → M Drehmoment J Trägheitsmoment α Winkelbeschleunigung

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Für die Rotation starrer Körper gibt es ein analoges Gesetz, das Grundgesetz der Dynamik der Rotation. Zu diesem Gesetz gelangt man auf formalem Wege, wenn man in das newtonsche Grundgesetz für die Größen der Translation die analogen Größen der Rotation einsetzt. Man erhält dann eine Gleichung, die als Grundgesetz der Dynamik der Rotation bezeichnet wird (Bild 1). Sie gibt den Zusammenhang zwischen dem auf einen drehbaren starren Körper wirkenden Drehmoment, seinem Trägheitsmoment und der Winkelbeschleunigung an und lautet:

Für den Zusammenhang zwischen dem an einem Körper angreifenden Drehmoment, seinem Trägheitsmoment und der Winkelbeschleunigung gilt die Gleichung:
M → = J ⋅ α → M Drehmoment J Trägheitsmoment α Winkelbeschleunigung

Das Drehmoment M = r ⋅ F ist ein axialer Vektor (Bild 1a) und hat die gleiche Richtung wie die Winkelbeschleunigung, die es hervorruft. Die Richtung ergibt sich durch Anwendung der Rechte-Hand-Regel (Korkenzieherregel): Zeigen die gekrümmten Finger der rechten Hand in Drehrichtung, so gibt der Daumen die Richtung des Drehmomentes und damit auch die Richtung der Winkelbeschleunigung an.

Gleichgewicht am starren Körper

Bei der Translation befindet sich ein Massepunkt dann im Gleichgewicht (Kräftegleichgewicht), wenn die Summe der auf ihn wirkenden Kräfte null ist.
Formal bedeutet das:
Für F = 0 bzw . ∑ i=1 n F → i = 0 → ist auch die Beschleunigung a = 0. Der Körper befindet sich in Ruhe oder in gleichförmiger geradliniger Bewegung .

In analoger Weise ergibt sich für einen drehbar gelagerten starren Körper:
Für M = 0 bzw . ∑ i=1 n M → i = 0 → ist auch die Winkelbeschleunigung α = 0. Der Körper befindet sich in Ruhe oder in gleichförmiger Drehbewegung .

Lernhelfer (Duden Learnattack GmbH): "Grundgesetz der Dynamik der Rotation." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik-abitur/artikel/grundgesetz-der-dynamik-der-rotation (Abgerufen: 30. July 2025, 22:24 UTC)

Suche nach passenden Schlagwörtern

  • Berechnung
  • newtonsches Grundgesetz
  • Winkelbeschleunigung
  • Masse
  • Korkenzieherregel
  • Beschleunigung
  • Rechte-Hand-Regel
  • Grundgesetz der Dynamik der Translation
  • starrer Körper
  • Massepunkt
  • Grundgesetz der Dynamik der Rotation
  • Kraft
  • axialer Vektor
  • analoge Größen
  • Rechenbeispiel
  • Trägheitsmoment
  • Drehmoment
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Rotationsenergie

Jeder bewegte Körper besitzt kinetische Energie (Bewegungsenergie). Das gilt auch für rotierende starre Körper, z.B. Schwungräder, die Rotoren von Generatoren und Motoren oder einen Kreisel.
Die in einem Körper gespeicherte Rotationsenergie hängt vom Trägheitsmoment dieses Körpers und von seiner Winkelgeschwindigkeit ab. Es gilt:

E r o t = 1 2 J ⋅ ω 2 J Trägheitsmoment ω Winkelgeschwindigkeit

Wissenstest, Mechanik starrer Körper

Die Mechanik starrer Körper kann unterteilt werden in die Statik starrer Körper und in die Dynamik rotierender starrer Körper. Gearbeitet wird mit dem Modell starrer Körper. Das bedeutet: Es wird sowohl die Form der Körper als auch die Verteilung ihrer Masse bezüglich einer Drehachse berücksichtigt. Beispiele für rotierende starre Körper sind Wellen bei Maschinen, Schwungräder, die Rotoren einer Windkraftanlage oder auch die Räder von Pkws. Im Test geht es um grundlegende Begriffe und Gesetze der Mechanik starrer Körper sowie um einige Anwendungen.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Mechanik starrer Körper".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Fahrphysik

Das Fahrverhalten von Kraftfahrzeugen wird im Wesentlichen durch die Konstruktion (z. B. Vorder-, Hinter- bzw. Allradantrieb, Fahrzeugart, Radstand, Spurweite, Achsbelastung) und das Wirken von äußeren Kräften bestimmt und wird bei besonderen Fahrsituationen (z.B. Anfahren, Bremsen, Kurvenfahrten) deutlich. Dargestellt und an Beispielen erläutert sind die unterschiedlichen Fahrzeugbewegungen, die verschiedenen Arten von Reibung, das Beschleunigen, Bremsen, Kurvenfahrten und Achsbelastungen.

Gewichtskräfte

Die Gewichtskraft gibt an, wie stark ein Körper auf eine Unterlage drückt oder an einer Aufhängung zieht.

Formelzeichen: F → G
Einheit:ein Newton (1 N)


Die Gewichtskraft kann mit der Gleichung F → G = m ⋅ g → berechnet werden. Sie ist wie jede andere Kraft eine gerichtete (vektorielle) Größe. Im Unterschied zur Masse ist die Gewichtskraft vom Ort abhängig, an dem sich der betreffende Körper befindet.
Ein spezieller Fall liegt vor, wenn die Kraft auf eine Unterlage oder eine Aufhängung null ist. Dann spricht man von Schwerelosigkeit oder Gewichtslosigkeit.

Kräfte und ihre Messung

Der Begriff Kraft wird im Alltag und in der Physik in vielfältiger Weise verwendet. Während der Alltagsbegriff mit unterschiedlichen Begriffsinhalten genutzt wird, ist die physikalische Größe Kraft eindeutig definiert:
Die Kraft gibt an, wie stark ein Körper bewegt oder verformt wird. Sie ist eine Wechselwirkungsgröße und eine vektorielle (gerichtete) Größe. Die Wirkung einer Kraft ist abhängig von ihrem Betrag, ihrer Richtung und ihrem Angriffspunkt.


Formelzeichen: F → Einheit: ein Newton (1 N) 1 N = 1 kg ⋅ m s 2
Man unterscheidet u.a. elektrische Kräfte, magnetische Kräfte, Reibungskräfte, Druckkräfte, Radialkräfte, Gewichtskräfte, Schubkräfte, Spannkräfte und Zugkräfte, Adhäsionskräfte und Kohäsionskräfte, innere Kräfte und äußere Kräfte voneinander.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025