Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 1 Die Physik - eine Naturwissenschaft
  4. 1.2 Denk- und Arbeitsweisen der Physik
  5. 1.2.3 Erkenntniswege in der Physik
  6. Anwenden physikalischer Gesetze

Anwenden physikalischer Gesetze

Ein wichtiges Ziel der Physik ist das Anwenden physikalischer Gesetze zum Lösen von Aufgaben und Problemen, z. B. zum Erklären und Voraussagen von Erscheinungen, zum Berechnen von Größen oder zum Konstruieren technischer Geräte. Dabei gibt es immer wieder bestimmte Schritte, die durchlaufen werden müssen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Ein wichtiges Ziel der Physik ist das Anwenden physikalischer Gesetze zum Lösen von Aufgaben und Problemen, z. B. zum Erklären und Voraussagen von Erscheinungen, zum Berechnen von Größen oder zum Konstruieren technischer Geräte. Dabei gibt es immer wieder bestimmte Schritte, die durchlaufen werden müssen:

  1. Analyse der gegebenen Aufgabe und Vereinfachung des Sachverhalts aus der Sicht der Physik.
  2. Erkennen und Benennen der gesetzmäßig wirkenden Zusammenhänge und der Bedingungen im Sachverhalt, Nennen der betreffenden Gesetze.
  3. Anwenden der Gesetze zum Lösen von Aufgaben, d. h. zum Erklären oder Voraussagen, zum Berechnen einer Größe. Dazu kann man verschiedene Mittel und Verfahren nutzen.

Ein Beispiel aus der Physik

Nachfolgend sind die genannten Schritte genauer charakterisiert und an einem Beispiel aus der Physik dargestellt. Zu lösen ist die folgende Aufgabe:

Ein Mädchen mit einer Masse von 63 kg springt im Schwimmbad von einem 5 m hohem Sprungturm ins Wasser. Welche Geschwindigkeit hat es beim Auftreffen auf die Wasseroberfläche?

Allgemeine SchritteBeispiel
1. Es geht zunächst darum, den Sachverhalt genauer zu erfassen. Dazu hilft häufig eine einfache Skizze. Darüber hinaus werden die gesuchten und gegebenen Größen und Fakten übersichtlich zusammengestellt.Das Herunterspringen kann näherungsweise als freier Fall eines Körpers angesehen werden. Dabei wird die ursprünglich vorhandene potenzielle Energie in kinetische Energie umgewandelt.
Gesucht: v
Gegeben:  m = 63   kg                    h = 5   m                    g = 9,81 m s 2
2. Wesentliche Seiten werden mit Hilfe physikalischer Gesetze beschrieben. Dazu muss man die gesetzmäßig wirkenden Zusammenhänge und die Bedingungen für das Wirken bekannter physikalischer Gesetze im Sachverhalt erkennen.Bei dem gegebenen Sachverhalt kann man unterschiedlich herangehen.

1. Möglichkeit:
Aus energetischer Sicht erfolgt unter der Bedingung, dass man die Energieumwandlung in andere Energieformen während des Falles vernachlässigen kann, eine Umwandlung von potenzieller in kinetische Energie. Unter der genannten Bedingung gilt der Energieerhaltungssatz der Mechanik.

2. Möglichkeit:
Der Sprung des Mädchens kann näherungsweise als freier Fall angesehen werden, da der Luftwiderstand bei einer solchen Fallhöhe zu vernachlässigen ist. Damit gelten das Weg-Zeit-Gesetz und das Geschwindigkeit-Zeit-Gesetz des freien Falls.

3. Die genannten Gesetze werden zum Berechnen der gesuchten Größe angewendet.
Dabei gibt es mitunter völlig unterschiedliche Lösungsmöglichkeiten.

 

Das Ergebnis wird mit Blick auf die Aufgabenstellung formuliert.

1. Möglichkeit:
Der Energieerhaltungssatz der Mechanik gilt in folgender Form:

E p o t = E k i n m ⋅ g ⋅ h = 1 2 ⋅ m ⋅ v 2 v 2 = 2 g ⋅ h v = 2 g ⋅ h v = 2 ⋅ 9,81   m s 2 ⋅ 5   m v = 9,9   m s = 36   km h

2. Möglichkeit:
Für den freien Fall gilt:

v = g ⋅ t    (1) Die Zeit  t  erhält man aus dem  Weg-Zeit-Gesetz  s = g 2 ⋅ t 2  durch Umstellen: t 2 = 2 s g     (2) Nun werden die Gleichungen (1) und (2)  miteinander verknüpft . Durch Quadrieren von Gleichung (1)  erhält man: v 2 = g 2 ⋅ t 2 Durch Einsetzen von  t 2  aus Gleichung 2  erhält man: v 2 = g 2 ⋅ 2 s g v 2 = 2 g ⋅ s v = 2 g ⋅ s Durch Einsetzen erhält man das  gleiche Ergebnis wie bei der  ersten Möglichkeit .

Ergebnis:
Wenn ein Mädchen von einem 5-m Turm herunterspringt, trifft sie bei Vernachlässigung der Reibung mit einer Geschwindigkeit von 36 km/h auf die Wasseroberfläche auf.

  • Darstellung des freien Falles in vereinfachter Form
Lernhelfer (Duden Learnattack GmbH): "Anwenden physikalischer Gesetze." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/anwenden-physikalischer-gesetze (Abgerufen: 20. May 2025, 07:33 UTC)

Suche nach passenden Schlagwörtern

  • Vereinfachung des Sachverhalts
  • Voraussagen
  • Anwenden physikalischer Gesetze
  • Probleme
  • Analyse
  • Erklären
  • Aufgaben
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Die kinetisch-statistische Betrachtungsweise

In der Thermodynamik oder Wärmelehre ist es üblich, zur Beschreibung der Zustände oder Vorgänge in einem thermodynamischen System unterschiedliche Betrachtungsweisen anzuwenden. Neben der phänomenologischen Betrachtungsweise wird die kinetisch-statistische Betrachtungsweise genutzt. Sie ist dadurch gekennzeichnet, dass zur Beschreibung von Sachverhalten und Vorgängen Teilchengrößen genutzt werden und die Beschreibung mit statistischen (stochatischen) Gesetzen erfolgt, die sichere Voraussagen über die Gesamtheit der Teilchen eines Systems ermöglichen, nicht aber über das Verhalten des einzelnen Teilchens.

Die phänomenologische Betrachtungsweise

In der Thermodynamik oder Wärmelehre ist es üblich, zur Beschreibung der Zustände oder Vorgänge in einem thermodynamischen System unterschiedliche Betrachtungsweisen anzuwenden. Neben der kinetisch-statistischen Betrachtungsweise wird die phänomenologische Betrachtungsweise genutzt. Sie ist an Erscheinungen (Phänomenen) orientiert und dadurch gekennzeichnet, dass zur Beschreibung von Sachverhalten und Vorgängen solche makroskopischen Zustands- und Prozessgrößen wie Druck, Volumen, Temperatur, Wärme und Arbeit genutzt werden.

Massepunkt und starrer Körper

Bei der Beschreibung der Bewegung von Körpern oder der Wirkung von Kräften auf Körper ist es an vielen Stellen sinnvoll, nicht den jeweiligen realen Körper, sondern ein Modell von ihm zu betrachten. Das ermöglicht es überhaupt erst, physikalische Gesetze in überschaubarer Weise zu formulieren. Je nachdem, ob man die Abmessungen eines Körpers vernachlässigen kann oder nicht, nutzt man die Modelle Massepunkt oder starrer Körper.
Während man sich bei dem Modell Massepunkt die gesamte Masse eines Körpers in einem Punkt vereinigt denkt, wird beim Modell starrer Körper der reale Körper als System von starr miteinander verbundenen Masseelementen betrachtet.

Galileo Galilei

* 15.02.1564 Pisa
† 08.01.1642 Florenz

Er war italienischer Physiker, Astronom und Professor für Mathematik in Pisa, Padua und Florenz. Große Entdeckungen machte er auf den Gebieten der Mechanik (u.a. Fall- und Wurfgesetze, Trägheitsgesetz), der Optik (u.a. Bau eines eigenen Fernrohres) und der Astronomie (Entdeckung der vier Jupitermonde). Er war ein Verfechter des heliozentrischen Weltbildes und wurde dafür von der Inquisition ermahnt und zur Abschwörung gezwungen. GALILEI führte das Experiment als wichtige Denk- und Arbeitsweise in die Naturwissenschaften ein.

Klassifizieren

Klassifizieren ist eine Erkenntnistätigkeit. Beim Klassifizieren werden verschiedene Objekte aufgrund gemeinsamer und unterscheidender Merkmale in Klassen eingeteilt. Alle Objekte, die gemeinsame Merkmale besitzen, werden zu einer Klasse zusammengefasst. Stoffe kann man z.B bezüglich ihrer Härte, ihrer Dichte, ihrer Wärmeleitfähigkeit oder ihrer elektrischen Leitfähigkeit klassifizieren.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025