Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.3 Elektrische und magnetische Felder
  5. 4.3.1 Das elektrische Feld
  6. Faraday-Käfig

Faraday-Käfig

Ein Faraday-Käfig ist ein Metallkäfig bzw. ein von Metall umgebener Raum. Werden auf diesen Metallkäfig elektrische Ladungen, z.B. durch einen Blitzeinschlag, gebracht, so verteilen sich die elektrischen Ladungen auf dem Metallkäfig und dringen nicht in den Innenraum ein. Im Innenraum ist man so vor einem Blitzschlag geschützt.
FARADAY-Käfige sind nach MICHAEL FARADAY benannt.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Unter einem FARADAY-Käfig versteht man einen Metallkäfig oder einen von Metall umgebenen Raum. Werden auf einen solchen Metallkäfig elektrische Ladungen gebracht, so verteilen sich diese auf der Oberfläche dieses Metallkäfigs. Sie dringen nicht in den Innenraum ein. Der Innenraum ist somit nicht nur frei von zusätzlichen elektrischen Ladungen, sondern auch frei von elektrischen Feldern.

Das gilt auch dann, wenn z.B. ein Blitz einen solchen FARADAY-Käfig trifft. Der Blitz trifft auf die Oberfläche des Käfigs, dringt aber nicht in den Innenraum ein. Man ist also in einem solchen FARADAY-Käfig vor Blitzschlag oder auch vor anderen starken elektrischen Entladungen geschützt.
Dabei ist es gleichgültig, ob es sich um einen vollständig von Metall umschlossenen Raum handelt oder ob die Abgrenzung nur durch ein Metallgitter erfolgt. Das stellte schon der englische Physiker MICHAEL FARADAY (1791-1867) fest. Nach ihm ist deshalb diese Anordnung bezeichnet.

Die Karosserien von Autos oder Flugzeughüllen sind solche FARADAY-Käfige. Man ist deshalb in einem Auto oder in einem Flugzeug vor einem Blitzschlag geschützt. Bei Cabrios reicht zur Abschirmung schon der Metallrahmen. Allerdings können starke elektrische Entladungen zu Störungen bei elektronischen Bauteilen führen, bleiben also trotzdem gefährlich.

FARADAY-Käfige nutzt man auch zur Abschirmung von Kabeln: Übertragungskabel für Computer oder Antennenkabel sind von einem Drahtgeflecht aus Kupfer umgeben. Dieses Drahtgeflecht bewirkt, dass keine elektrischen Felder von außen die übertragenen Daten beeinflussen können. Die Abschirmung bewirkt eine störungsfreie Datenübertragung.

  • Auch eine starke elektrische Entladung dringt nicht ins Innere eines PKW.
Lernhelfer (Duden Learnattack GmbH): "Faraday-Käfig." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/faraday-kaefig (Abgerufen: 20. May 2025, 17:55 UTC)

Suche nach passenden Schlagwörtern

  • Abschirmung
  • Blitzschutzanlage
  • Kabelabschirmung
  • Blitzableiter
  • Elektrisches Kabel
  • Faraday
  • Elektrische Ladung
  • elektrisches Feld
  • Faraday-Käfig
  • Blitz
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Millikan-Versuch zur Bestimmung der Elementarladung

In der zweiten Hälfte des 19. Jahrhunderts wurde die Existenz von Elektronen nachgewiesen und der Begriff Elektron in die Physik eingeführt. Bekannt war auch, dass Elektronen negativ geladen sind. Die genaue Bestimmung dieser Ladung, der Elementarladung, gelang erstmals in den Jahren 1909-1913 dem amerikanischen Physiker ROBERT ANDREWS MILLIKAN (1868-1953). Für seine Präzisionsbestimmungen der Elementarladung erhielt MILLIKAN 1923 den Nobelpreis für Physik. Der Versuch selbst, der die Bezeichnung MILLIKAN-Versuch trägt, gehört zu den grundlegenden Experimenten der Physik.

Entdeckung der elektromagnetischen Induktion

Ausgangspunkt für die Entdeckung der Induktion waren Vorstellungen von der Einheit der Naturkräfte und vermutete Zusammenhänge zwischen Elektrizität und Magnetismus.
1820 bemerkte OERSTED in einem Versuch, dass eine Magnetnadel in der Nähe eines elektrischen Leiters abgelenkt wird, wenn man den Strom einschaltet. Andere Wissenschaftler, wie AMPÈRE und FARADAY, bauten die Versuche von OERSTED nach und entwickelten sie weiter. Dabei fand FARADAY 1831 die elektromagnetische Induktion.
Innerhalb von drei Monaten entwickelte er alle Grundversuche der Induktion und eine Urform eines elektrischen Generators.

Piezoelektrischer Effekt

Quarzkristalle bestehen aus sechseckigen Waben, deren Eckpunkt abwechselnd positive und negative Ladungen tragen. Wird ein solcher Kristall mechanisch belastet, so kommt es zu einer Verschiebung der äußeren Ladungen und damit zu einer unterschiedlichen Aufladung der beiden äußeren Flächen. Dieser von den Gebrüdern CURIE entdeckte Effekt wird als piezoelektrischer Effekt bezeichnet. Genutzt werden kann er z.B. zum Bau von Drucksensoren oder Kraftsensoren.
Bringt man umgekehrt einen Quarzkristall zwischen die Platten eines geladenen Kondensators, so kommt es infolge der coulombschen Kräfte zu einer Deformierung des Kristalls. Dieser reziproke piezoelektrische Effekt kann z.B. zur Schwingungserzeugung genutzt werden. Man spricht dann von einem Schwingquarz.

Das Induktionsgesetz

Das Induktionsgesetz ist ein grundlegendes physikalisches Gesetz und die Grundlage für die Wirkungsweise solcher Geräte wie Transformatoren und Generatoren. In Worten kann man es so formulieren:
In einer Spule wird eine Spannung induziert, wenn sich das von der Spule umfasste Magnetfeld ändert. Der Betrag der Induktionsspannung ist umso größer, je schneller sich das von der Spule umfasste Magnetfeld ändert.
Eine allgemeine mathematische Formulierung des Induktionsgesetzes lautet:
U i = − N ⋅ d φ d t oder U i = − N ⋅ d ( B ⋅ A ) d t
Aus dieser allgemeinen Formulierung kann man alle wesentlichen Spezialfälle ableiten, insbesondere auch diejenigen, die der Wirkungsweise von Transformatoren und Generatoren zugrunde liegen.

Leitung in Flüssigkeiten

In Flüssigkeiten erfolgt nur dann ein Leitungsvorgang, wenn durch Dissoziation frei bewegliche (wanderungsfähige) Ionen vorhanden. Beim Anlegen einer Spannung und damit beim Vorhandensein eines elektrischen Feldes bewegen sich die Ionen gerichtet. Es wird elektrische Energie in thermische Energie umgewandelt. Eine für Anwendungen wichtige Besonderheit bei Leitungsvorgängen in Flüssigkeiten besteht darin, dass mit den Ionen nicht nur ein Transport von Ladungen, sondern auch ein Stofftransport erfolgt. Das wird z.B. beim Galvanisieren oder beim Lackieren von Autoteilen genutzt.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025