Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 6 Atom- und Kernphysik
  4. 6.1 Aufbau von Atomen
  5. 6.1.0 Aufbau von Atomen
  6. Isotope

Isotope

Atomkerne eines Elements mit gleicher Protonenzahl, aber unterschiedlicher Anzahl von Neutronen werden als Isotope bezeichnet. Es sind spezielle Nuklide. Wegen der gleichen Protonenzahl (= Kernladungszahl) haben Isotope auch die gleiche Anzahl von Elektronen in der Hülle.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Atomkerne eines Elements mit gleicher Protonenzahl, aber unterschiedlicher Neutronenzahl werden als Isotope bezeichnet. Es sind spezielle Nuklide. Wegen der gleichen Protonenzahl (=Kernladungszahl) haben Isotope auch die gleiche Anzahl von Elektronen in der Hülle.

Beispiele für Isotope
So existieren z. B. beim Wasserstoff drei in der Natur vorkommende Isotope, die als Wasserstoff, Deuterium und Tritium bezeichnet werden (Bild 1). Es gibt nur etwa 20 Elemente, die nur aus einem einzigen stabilen Isotop bestehen. Dazu gehören beispielsweise:

9 19 F ,  21 23 Na ,  79 197 Au

Die meisten Elemente bestehen aus einem Isotopengemisch, wobei die Anteile der einzelnen Isotope sehr unterschiedlich sein können. So hat z. B. Uran, das als Kernbrennstoff genutzt wird, drei in der Natur vorkommende stabile Isotope mit folgenden Anteilen bei natürlichen Uranvorkommen:

 Uran-238:
Uran-235:
Uran-234:
99,28 %
0,72 %
0,006 %

Für Brennelemente in Kernkraftwerke nutzt man angereichertes Uran mit folgender Zusammensetzung:

 Uran-235:
Uran-238:
3,3 %
96,7 %

Bei Kupfer betragen die Anteile der stabilen Isotope:

 Kupfer-63:
Kupfer-65:
69,1 %
30,9 %

Die meisten stabilen Isotope hat Zinn (10), die meisten Isotope überhaupt sind beim Xenon bekannt (mindestens 24).
Außer in der Neutronenzahl und damit in der Masse unterscheiden sich die Isotope eines Elements im Kernvolumen und bei leichten Elementen im chemischen Verhalten.

Stabile und radioaktive Isotope

Man kann zwischen stabilen Isotopen und radioaktiven Isotopen, auch Radioisotope oder Radionuklide genannt, unterscheiden. Radioaktive Isotope zerfallen unter Aussendung radioaktiver Strahlung. Bekannt sind heute etwa 300 stabile und über 2.400 radioaktive und damit instabile Isotope.

  • Isotope des Wasserstoffs und ihre Anteile
Lernhelfer (Duden Learnattack GmbH): "Isotope." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/isotope (Abgerufen: 01. July 2025, 07:50 UTC)

Suche nach passenden Schlagwörtern

  • Radionuklide
  • Protonenzahl
  • Radioisotope
  • stabile Isotope
  • Isotopengemisch
  • Elektronen
  • Nuklide
  • Neutronenzahl
  • Kernladungszahl
  • radioaktive Isotope
  • Isotope
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Größen zur Beschreibung radioaktiver Strahlung

Radioaktive Strahlung kann durch verschiedene physikalische Größen beschrieben werden, wobei sich die Größen teilweise auf die Strahlungsquelle und teilweise auf die Körper beziehen, die radioaktiver Strahlung ausgesetzt sind. Die wichtigsten Größen sind die Aktivität, die Äquivalentdosis, die Energiedosis, die Energiedosisleistung und die Ionendosis.

Bohrsches Atommodell

Der dänische Physiker NIELS BOHR (1885-1962) entwickelte 1913 das von dem britischen Physiker ERNEST RUTHERFORD (1871-1937) im Jahre 1911 angegebene Atommodell weiter, wobei er das Kern-Hülle-Modell mit Quantenvorstellungen verband. Bohr formulierte für sein Atommodell, das man als bohrsches Atommodell bezeichnet, einige grundlegende Postulate. Ein Vorteil dieses Atommodells war, dass man mit ihm die Emission und Absorption von Strahlung erklären konnte. Für Wasserstoff konnten auch die Spektrallinien berechnet werden. Entscheidende Nachteile waren, dass es bei anderen Atomen als Wasserstoff versagt und im Widerspruch zu quantenphysikalischen Erkenntnissen von der Vorstellung bestimmter Bahnen der Elektronen ausgeht.

Kernumwandlungen

Unter einer Kernumwandlung versteht man die Umwandlung von Atomkernen in andere Kerne. Das kann spontan oder durch äußere Einflüsse und Bedingungen erfolgen. Zu den Kernumwandlungen gehören der Spontanzerfall, die Kernspaltung und die Kernfusion. Darüber hinaus gibt es eine Vielzahl weiterer Kernumwandlungen, die meist infolge äußerer Einflüsse vor sich gehen.

Quantenmechanisches Atommodell

Die von dem britischen Physiker ERNEST RUTHERFORD (1871-1937) im Jahre 1911 und von dem dänischen Physiker NIELS BOHR (1885-1962) im Jahre 1913 angegebenen Atommodelle waren wichtige Schritte in der Entwicklung von Vorstellungen über den Atombau. Aber auch das bohrsche Atommodell erwies sich schnell ist nicht ausreichend für die Erklärung von Sachverhalten. Insbesondere die Annahme von bestimmten Bahnen für die Elektronen war mit den Erkenntnissen der Quantenphysik nicht vereinbar. In den 20er Jahren des 20. Jahrhunderts wurde ein quantenmechanisches Atommodell entwickelt, das auch als Orbitalmodell bezeichnet wird. Es ist ein mathematisches Modell, das sich der grafischen Veranschaulichung weitgehend entzieht. Es beruht auf quantenphysikalischen Erkenntnissen.

Nachweismethoden für radioaktive Strahlung

Radioaktive Strahlung lässt sich nicht mit unseren Sinnesorganen erfassen. Um sie nachzuweisen, müssen ihre Wirkungen genutzt werden. Wichtige Nachweismöglichkeiten sind

  • fotografische Schichten,
  • Zählrohre,
  • Nebelkammern.

Darüber hinaus gibt es weitere Nachweismöglichkeiten, z.B. Szintillationszähler, Blasenkammern, Ionisationskammern, Spinthariskope oder Detektoren unterschiedlicher Bauart.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025