Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.3 Elektrische und magnetische Felder
  5. 4.3.2 Das magnetische Feld
  6. Magnetfeld der Erde

Magnetfeld der Erde

Unsere Erde ist ein großer Magnet. Allerdings ist die mittlere Stärke des Magnetfeldes der Erde relativ gering. Sie beträgt nur etwa 50 Mikrotesla. Trotz dieses geringen Wertes richtet sich eine frei bewegliche Magnetnadel entsprechend des Verlaufes der Feldlinien aus. Das kann zur Bestimmung der Himmelsrichtung mithilfe eines Kompasses genutzt werden.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Unsere Erde ist ein großer Magnet. Das Magnetfeld der Erde hat den in Bild 1 dargestellten Verlauf. Allerdings ist die mittlere Stärke des Magnetfeldes der Erde relativ gering. Sie beträgt nur etwa 50 Mikrotesla. Trotz dieses geringen Wertes richtet sich eine frei bewegliche Magnetnadel entsprechend des Verlaufes der Feldlinien aus.

Die magnetischen Pole der Erde fallen nicht mit den geographischen Polen zusammen, beide Polarten sind aber doch so nahe beieinander, sodass man sich mit einem Kompass relativ einfach auf der Erdoberfläche in Richtung Nord orientieren kann. Der magnetische Südpol befindet sich dabei in der Nähe des geographischen Nordpols.

  • Magnetfeld der Erde in der Nähe der Erdoberfläche

Entstehung des Erdmagnetfeldes

Die Erde besitzt einen Kern aus Eisen, sodass man annehmen könnte, das Erdmagnetfeld würde von einem Eisenmagneten erzeugt. Diese Idee ist aber nicht zutreffend, denn der Eisenkern der Erde befindet sich in einen glühenden Zustand. Wenn man Eisen stark erhitzt, verliert es seine Eigenschaften als Dauermagnet. Da ein Dauermagnet ausscheidet, bleibt als Erklärungsmodell nur noch der Dynamoeffekt übrig.
Bild 2 zeigt einen einfachen Scheibendynamo. In der rotierenden Scheibe wird ein elektrischer Strom induziert, der zwischen Rotationsachse und äußerem Scheibenrand abgegriffen werden kann.

  • Einfacher Dynamo

In Bild 3 ist dieses Prinzip geringfügig abgeändert. Der Dynamo rotiert und ein Schleifkontakt verbindet den äußeren Scheibenrand mit der Rotationsachse. Allerdings befindet sich die Anordnung nicht in einem äußeren Magnetfeld. Eine kleine magnetische Störung in der Umgebung induziert einen minimalen Stromfluss, der aufgrund des lenzschen Gesetzes seinerseits dem Abbau des Störfeldes entgegenwirkt und es dadurch verstärkt. Der Dynamo erzeugt sein eigenes Magnetfeld - er ist selbsterregend.

Ein ähnlicher Vorgang spielt sich in der Erde ab. Das Erdmagnetfeld induziert einen elektrischen Strom in dem leitfähigen und flüssigen erdinneren Material, der dem Abbau dieses Feldes entgegenwirkt. Die dabei auftretenden Strömungsprozesse sind extrem kompliziert und wurden bislang auch noch nicht vollständig verstanden.

  • Selbsterregter Dynamo

Die Schutzwirkung des Erdmagnetfeldes

Das gesamte die Erde umgebende Magnetfeld nennt man Magnetosphäre. Die von der Sonne ausgehenden elektrisch geladenen Teilchen verformen die Magnetosphäre. In Richtung zur Sonne reicht sie deshalb nicht so weit in den Weltraum hinaus, wie auf der sonnenabgewandten Seite der Erde. Das Erdmagnetfeld schützt uns vor den teilweise sehr energiereichen Teilchen in der Sonnenstrahlung.

Treffen diese Teilchen auf die Magnetosphäre, werden sie gezwungen, sich entlang der magnetischen Feldlinien zu bewegen. Sie wandern entlang dieser Feldlinien zu den magnetischen Polen und treten erst dort in die Erdatmosphäre ein. Die dabei auftretende Leuchterscheinung nennt man Polarlicht.

  • Verformtes Magnetfeld: Durch den Einfluss des Sonnenwindes ist das Erdmagnetfeld nicht symmetrisch, sondern stark verformt.
Lernhelfer (Duden Learnattack GmbH): "Magnetfeld der Erde." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/magnetfeld-der-erde (Abgerufen: 20. May 2025, 18:11 UTC)

Suche nach passenden Schlagwörtern

  • Magnetnadel
  • Dynamoeffekt
  • Erdmagnet
  • Schutzwirkung des Erdmagnetfeldes
  • geografische Pole
  • Kompass
  • Magnetfeld der Erde
  • magnetische Pole
  • Polarlicht
  • Magnetosphäre
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Magnetspeicher

Zur Speicherung von Informationen gibt es unterschiedliche Möglichkeiten. Während man bei CDs und DVDs die thermische Verformung feinster Bereiche auf einer Disc („Brennen einer CD oder einer DVD“) nutzt, wendet man bei Festplatten, Disketten unterschiedlicher Bauart, Tonbändern und Videobändern die magnetische Speicherung an. Bei Magnetspeichern wird eine dünne magnetische Schicht durch einen Schreibkopf entsprechend der einzuprägenden Informationen magnetisiert. Durch einen Lesekopf können diese Informationen wieder abgerufen werden.

Physikalische Felder im Vergleich

Elektrische Felder, magnetische Felder und Gravitationsfelder sind dadurch gekennzeichnet, dass auf Körper mit bestimmten Eigenschaften, die sich in ihnen befinden, Kräfte ausgeübt werden. Alle drei Arten von Feldern lassen sich mithilfe des Modells Feldlinienbild beschreiben. Für jedes der Felder gibt es feldbeschreibende Größen, die teilweise in analoger Weise definiert sind. Darüber hinaus gibt es zwischen diesen drei Arten von Feldern weitere Gemeinsamkeiten, aber auch deutliche Unterschiede.

Stoffe im Magnetfeld

Alle Stoffe werden durch magnetische Felder beeinflusst. Umgekehrt gilt auch: Alle Stoffe beeinflussen magnetische Felder. Diese Beeinflussung ist aber sehr unterschiedlich. Während sogenannte diamagnetische Stoffe (z.B. Wasser, Gold, Glas) und paramagnetische Stoffe (z.B. Aluminium, Platin, Luft) kaum zu einer Veränderung magnetischer Felder führen, bewirken ferromagnetische Stoffe (z.B. Eisen, Cobalt, Nickel) eine zum Teil erhebliche Verstärkung und Bündelung eines Magnetfeldes. Darüber hinaus lassen sich ferromagnetische Stoffe selbst magnetisieren. Dabei wird zwischen magnetisch weichen und magnetische harten Stoffen differenziert. Diese Unterscheidung ist vor allem im Hinblick auf Anwendungen von großer Bedeutung.

Teilchenbeschleuniger

Zur Untersuchung von Elementarteilchen und ihren Wechselwirkungen untereinander sowie mit Stoffen nutzt man Teilchenbeschleuniger unterschiedlicher Bauart. Ziel ist es, Erkenntnisse über die Struktur der Materie im subatomaren Bereich zu gewinnen. Wichtige Arten von Beschleunigern sind Linearbeschleuniger, Zyklotrone, Synchronzyklotrone und Synchrotrone.
Dabei werden geladene Teilchen (Elektronen, Protonen, Ionen) durch elektrische Felder stark beschleunigt und als „Geschosse“ genutzt. Zusätzlich kann man sie durch magnetische Felder auf kreis- bzw. spiralförmigen Bahnen halten. Die Wechselwirkungen mit anderen Teilchen oder Stoffen werden registriert und ausgewertet. Untersuchungen mit Teilchenbeschleunigern haben in den letzten Jahrzehnten zu einer erheblichen Vertiefung der Erkenntnisse über die Struktur der Materie geführt.

Anwendungen von Magneten

Sowohl Dauermagnete als auch Elektromagnete werden in vielfältiger Weise genutzt. Mit einem Kompass, dessen Nadel sich im Erdmagnetfeld ausrichtet, kann man die Himmelsrichtung bestimmen. Lasthebemagnete werden zum Transport von Blechen oder Schrott eingesetzt. Lautsprecher, Relais, Klingeln, Türgongs oder Sicherungsautomaten besitzen als wichtiges Bauteil einen Elektromagneten. Die elektrische Telegrafie wurde erst möglich, als man Elektromagnete nutzte. Das gilt auch für die Telefonie. Einige der genannten Beispiele sind in dem Beitrag ausführlich dargestellt.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025