Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.4 Elektromagnetische Schwingungen und Wellen
  5. 4.4.2 Elektromagnetische Schwingungen
  6. Schwingkreis

Schwingkreis

Als Schwingkreis bezeichnet man im einfachsten Fall eine Anordnung eines Kondensators und einer Spule in einem geschlossenen Stromkreis. Durch Anlegen einer äußeren Wechselspannung kann ein Schwingkreis zu elektromagnetischen Eigenschwingungen angeregt werden. Bei diesen Schwingungen wandeln sich beständig elektrische Feldenergie im Kondensator und magnetische Feldenergie an der Spule ineinander um.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Als Schwingkreis bezeichnet man im einfachsten Fall eine Anordnung eines Kondensators und einer Spule in einem geschlossenen Stromkreis (Bild 1). Durch Anlegen einer äußeren Wechselspannung kann ein Schwingkreis zu elektromagnetischen Eigenschwingungen angeregt werden. Bei diesen Schwingungen wandeln sich beständig elektrische Feldenergie im Kondensator und magnetische Feldenergie an der Spule ineinander um.

Die periodischen Vorgänge am Schwingkreis beschreibt man zweckmäßig beginnend mit dem aufgeladenen Kondensator (Bild 2). Entfernt man die äußere Spannungsquelle aus dem Schwingkreis, dann existiert keine äußere Kraft mehr auf die Ladungsträger, die sich auf den Kondensatorplatten angesammelt haben. Demzufolge beginnt sofort der Entladungsvorgang, bei dem das elektrische Feld zwischen den Kondensatorplatten abgebaut wird. Im Schwingkreis fließt dabei ein elektrischer Strom, der in der Spule ein Magnetfeld erzeugt. Nachdem der Stromfluß zum Erliegen gekommen ist, bricht das Spulenfeld zusammen und verändert dabei seine Stärke. Ein zeitlich veränderliches magnetisches Feld induziert aber nach dem Induktionsgesetz eine elektrische Spannung in den Spulenwindungen, durch die ein elektrischer Strom im Schwingkreis hervorgerufen wird. Nun setzt der Ladevorgang am Kondensator wieder ein. Schließlich beginnt der periodische Prozess mit dem Entladen des Kondensators erneut.

Der ungedämpfte Schwingkreis

Würden sich in einem Schwingkreis nur der kapazitive Widerstand des Kondensators und der induktive Widerstand der Spule befinden, dann müsste der Schwingungsvorgang ohne Verluste unaufhörlich vonstatten gehen. Die Amplitude der elektromagnetischen Schwingung würde nicht abnehmen, die Schwingung selbst wäre also ungedämpft (Bild 3). Diese Eigenschaft hängt mit dem Verhalten kapazitiver und induktiver Widerstände zusammen, die, anders als ohmsche Widerstände, keine elektromagnetische Energie in thermische Energie umwandeln.
Die Periodendauer einer elektromagnetischen Schwingung im ungedämpften Schwingkreis hängt nur von der Kapazität C des Kondensators und der Induktivität L der Spule ab. Man berechnet die Periodendauer mit eienr Gleichung, die als thomsonsche Schwingungsgleichung bezeichnet wird:

T = 2 π L ⋅ C

Gegenwärtig kann man ungedämpfte Schwingkreise sehr gut mit Hilfe der Tieftemperaturphysik realisieren. Dabei nutzt man Effekte aus, die bei sehr starker Abkühlung von elektrischen Bauteilen auftreten. Insbesondere verliert ein stark gekühlter Leitungsdraht bei extrem tiefen Temperaturen seinen ohmschen Widerstand. Man sagt, er sei supraleitend geworden.

Der gedämpfte Schwingkreis

Ein ungedämpfter Schwingkreis ist eine Idealvorstellung, die, abgesehen von den Verhältnissen bei sehr tiefen Temperaturen, unter Normalbedingungen nur annähernd verwirklicht werden kann. Der Leitungsdraht im Schwingkreis, aber auch der Spulendraht oder die stromdurchflossenen Bauteile des Kondensators besitzen natürlich auch immer einen ohmschen Widerstand, durch den Verluste hervorgerufen werden. In jedem Schwingkreis nimmt also die Schwingungsamplitude im Laufe der Zeit ab. Auch die Dauer einer Schwingungsperiode wird durch einen ohmschen Widerstand im Schwingkreis beeinflusst. Da ein ohmscher Widerstand die Leitungsvorgänge im Schwingkreis behindert, vergrößert sich durch ihn die Periodendauer (Schwingungsdauer). Diesen Zusammenhang erkennt man auch anhand der Gleichung für die Schwingungsdauer im gedämpften Schwingkreis:

T = 2 π 1 L ⋅ C − R 2 4 ⋅ L 2

Offene und geschlossene Schwingkreise

Einen Schwingkreis, in den sich Spule und Kondensator in einem geschlossenen Stromkreis befinden, nennt man geschlossen. Zieht man die Kondensatorplatten auseinander, dann entsteht ein offener Schwingkreis. Das elektrische Feld eines offenen Schwingkreises wird offensichtlich in einem viel größeren Raumgebiet gespeichert, als in einem geschlossenen Schwingkreis. Verändert es seine Stärke während der Eigenschwingung im Schwingkreis, dann kann dieses Feld in den Raum ausgesandt werden und sich als elektromagnetische Welle ausbreiten. Dadurch wird dem offenen Schwingkreis zusätzlich Energie in Form von abgestrahlter Feldenergie entzogen. Ein Dipol (Antenne) stellt einen offenen Schwingkreis dar.

Lernhelfer (Duden Learnattack GmbH): "Schwingkreis." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/schwingkreis (Abgerufen: 20. May 2025, 14:33 UTC)

Suche nach passenden Schlagwörtern

  • offener Schwingkreis
  • Berechnungstool
  • Ladevorgang
  • interaktives Experiment
  • magnetische Feldenergie
  • ungedämpfter Schwingkreis
  • Magnetfeld
  • gedämpfter Schwingkreis
  • elektrischer Strom
  • Thomsonsche Schwingungsgleichung
  • Simulation
  • Entladungsvorgang
  • elektrische Feldenergie
  • Induktionsgesetz
  • geschlossener Schwingkreis
  • Animation
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Generatoren zur Schwingungserzeugung

Die elektromagnetischen Schwingungen in einem Schwingkreis klingen nach einmaliger Anregung relativ schnell wieder ab, weil elektromagnetische Energie durch den ohmschen Widerstand des Leitungsdrahtes in Wärme umgewandelt und dadurch dem Schwingkreis entzogen wird. Möchte man die Schwingung aufrechterhalten, dann muss man dem Schwingkreis im Takt der Eigenschwingung und in der richtigen Phase Energie zuführen. Das geschieht in Generatoren zur Erzeugung elektromagnetischer Schwingungen, häufig mithilfe einer meißnerschen Rückkopplungsschaltung.
Eine spezielle Art von Generatoren sind Tongeneratoren, mit denen elektromagnetische Schwingungen im hörbaren Bereich erzeugt werden.

Heinrich Hertz

* 22.02.1857 in Hamburg
† 01.01.1894 in Bonn

Er war ein deutscher Physiker, der experimentell die von dem britischen Physiker MAXWELL vorhergesagten elektromagnetischen Wellen nachwies. Er untersuchte auch deren Eigenschaften und schuf damit eine entscheidende Grundlage für die drahtlose Nachrichtenübertragung. Die Einheit der Frequenz und die bei Rundfunk und Fernsehen verwandten hertzschen Wellen sind nach ihm benannt.

Alexander Meißner

* 14.09.1883 in Wien
† 03.01.1958 in Berlin

Er war ein deutscher Physiker und Hochfrequenztechniker und beschäftigte sich insbesondere mit elektromagnetischen Wellen und deren Anwendungen. Bekannt wurde er vor allem durch die nach ihm benannte meißnersche Rückkopplungsschaltung zur Erzeugung hochfrequenter und ungedämpfter elektromagnetischer Schwingungen.

Der elektromagnetische Schwingkreis

Als Schwingkreis bezeichnet man im einfachsten Fall eine Anordnung eines Kondensators und einer Spule in einem geschlossenen Stromkreis. Durch Anlegen einer äußeren Wechselspannung kann ein Schwingkreis zu elektromagnetischen Eigenschwingungen angeregt werden. Bei diesen Schwingungen wandeln sich beständig elektrische Feldenergie im Kondensator und magnetische Feldenergie an der Spule ineinander um.

Lord Kelvin of Largs (William Thomson)

* 26.06.1824 Belfast
† 17.12.1907 Netherhall (Largs bei Glasgow)

Er war ein irisch-schottischer Physiker und führte die absolute Temperaturskala ein. Die Einheit der absoluten Temperatur, das Kelvin, ist nach ihm benannt. Darüber hinaus beschäftigte er sich mit elektrischen Schwingungen und mit der Telegrafie und führte technisch wichtige Untersuchungen zu Leitungsvorgängen in Kabeln durch.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025