Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 3 Wärmelehre
  4. 3.1 Temperatur und Wärme
  5. 3.1.2 Wärme und Energie
  6. Spezifische Wärmekapazität

Spezifische Wärmekapazität

Die spezifische Wärmekapazität eines Stoffes gibt an, wie viel Wärme von einem Kilogramm (1 kg) dieses Stoffes abgegeben oder aufgenommen wird, wenn sich seine Temperatur um ein Kelvin (1 K) ändert.

 Formelzeichen:c
 Einheit:ein Kilojoule je Kilogramm und Kelvin ( 1 kJ kg ⋅ K )

Für Natur und Technik von besonderer Bedeutung ist die spezifische Wärmekapazität von Wasser.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Magma quillt aus dem Erdinneren und kühlt sich allmählich ab. Dabei gibt es Wärme an die Umgebung ab. Seine thermische Energie verringert sich.
Wenn wir heißes Wasser brauchen, so müssen wir dem aus der Leitung entnommenen Wasser Wärme zuführen, indem wir es z. B. auf eine Herdplatte stellen. Das Wasser nimmt Wärme auf. Seine thermische Energie vergrößert sich.

Die Wärme, die von einem Körper an seine kältere Umgebung abgegeben oder die von einem Körper aufgenommen wird, ist abhängig von

  • dem Stoff, aus dem der Körper besteht,
  • der Masse des Körpers und
  • der Temperaturdifferenz zwischen der Endtemperatur und der Anfangstemperatur des Körpers.

Die Zusammenhänge zwischen den verschiedenen Größen sind in der Grundgleichung der Wärmelehre beschrieben. Die Abhängigkeit der abgegebenen oder aufgenommenen Wärme vom jeweiligen Stoff wird durch die spezifische Wärmekapazität charakterisiert. Allgemein gilt:

Die spezifische Wärmekapazität eines Stoffes gibt an, wie viel Wärme von einem Kilogramm (1 kg) dieses Stoffes abgegeben oder aufgenommen wird, wenn sich seine Temperatur um ein Kelvin (1 K) ändert.

 Formelzeichen:c
 Einheit:ein Kilojoule je Kilogramm und Kelvin ( 1 kJ kg ⋅ K )

 

Die spezifische Wärmekapazität ist eine wichtige Stoffkonstante. In Bild 2 sind für die verschiedenen Stoffe die Werte für diese Stoffkonstante angegeben. Bei Gasen beziehen sich die angegebenen Werte auf konstanten Druck. Darüber hinaus gibt es für Gase auch eine spezifische Wärmekapazität bei konstanten Volumen.

  • Spezifische Wärmekapazität von Stoffen

Bedeutung der spezifischen Wärmekapazität von Wasser

Die Bedeutung der spezifischen Wärmekapazität von Wasser ergibt sich daraus, dass Wasser von allen in der Natur vorkommenden Stoffen mit die größte spezifische Wärmekapazität hat und darüber hinaus gut verfügbar ist. Der Wert von

c = 4,19 kJ kg ⋅ K

bedeutet: Ein Liter Wasser nimmt eine Wärme von 4,19 kJ auf, wenn es um 1 K erwärmt wird. Es gibt eine Wärme von 4,19 kJ wieder ab, wenn es sich um 1 K abkühlt.

Große Wassermengen können demzufolge bei Temperaturänderungen große Mengen Wärme aufnehmen oder abgeben. Deshalb haben größere Seen, Meere oder Ozeane erheblichen Einfluss auf das Klima.
Im Frühjahr und Sommer wird vom Wasser bei Sonneneinstrahlung aufgrund der großen spezifischen Wärmekapazität des Wassers viel Wärme gespeichert. Diese Wärme wird auch der Umgebung entzogen. An großen Seen und Küsten ist es deshalb im Frühjahr und Sommer meist nicht so warm wie im Binnenland.
Im Herbst und Winter wird ein erheblicher Teil dieser Wärme an die Umgebung abgegeben. An großen Seen und Küsten ist es dann milder als im Binnenland. Durch große Wasserflächen entsteht somit ein typisches Seeklima mit relativ milden Wintern und relativ kühlen Sommern.

Beeinflusst wird das Klima in vielen Regionen auch durch gewaltige Meeresströmungen, z. B. durch den warmen Golfstrom, der seinen Ausgangspunkt im karibischen Raum (Mittelamerika) hat und der das Klima in England, Irland und an der norwegischen Küste deutlich beeinflusst.

Auch in der Technik besitzt Wasser wegen seiner großen spezifischen Wärmekapazität und natürlich auch wegen seiner guten Verfügbarkeit große Bedeutung. In Warmwasserheizungen wird genutzt, dass Wasser aufgrund seiner Wärmekapazität viel Energie durch Wärme transportiert. Für die Kühlung von Motoren oder als Kühlmittel in Kraftwerken wird aus diesem Grunde ebenfalls Wasser verwendet.

  • In Wasser ist viel thermische Energie gespeichert.
Lernhelfer (Duden Learnattack GmbH): "Spezifische Wärmekapazität." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/spezifische-waermekapazitaet (Abgerufen: 20. May 2025, 23:36 UTC)

Suche nach passenden Schlagwörtern

  • Kühlung von Motoren
  • Seeklima
  • Grundgleichung der Wärmelehre
  • thermische Energie
  • Wärme
  • Wärmekapazität
  • Kühlmittel
  • Klima
  • spezifische Wärmekapazität
  • Stoffkonstante
  • Warmwasserheizung
  • Bedeutung der spezifischen Wärmekapazität von Wasser
  • Werte für diese Stoffkonstante
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

René Antoine Reaumur

* 28.02.1683 La Rochelle
† 18.10.1757 Schloss Bermondière

Er war ein vielseitiger französischer Naturforscher, der sich vor allem mit physikalischen und biologischen Problemen beschäftigte. Bekannt wurde er durch die von ihm geschaffene Temperaturskala, die Reaumur-Skala. Darüber hinaus war er Herausgeber einer Enzyklopädie und führte zahlreiche tier- und pflanzenphysiologische Arbeiten durch.

Die Wärme

Die Wärme ist eine relativ komplizierte physikalische Größe, deren Wesen erst im Laufe vieler Jahrzehnte geklärt werden konnte. Heute kann man klar definieren: Die Wärme gibt an, wie viel thermische Energie von einem Körper auf einen anderen Körper übertragen wird.

 Formelzeichen:Q
 Einheit:ein Joule (1 J)

Die Wärme ist wie die mechanische Arbeit eine Prozessgröße, da sie den Prozess der Energieübertragung zwischen Körpern beschreibt.

Kalorimetrische Messungen

Unter dem Begriff „kalorimetrische Messungen“ werden solche Messungen zusammengefasst, bei denen man beispielsweise die spezifische Wärmekapazität eines Stoffes, seine Schmelzwärme oder den spezifischen Heizwert eines Brennstoffes und damit wichtige Stoffkonstanten bestimmen kann. Genutzt wird dazu ein Kalorimeter.
Für die Messung der spezifischen Wärmekapazität oder der Schmelzwärme erfolgt im Kalorimeter eine Mischung von Stoffen und damit ein Temperaturausgleich. Aus den gemessenen Temperaturdifferenzen und aus der Energiebilanz lässt sich die jeweilige Stoffkonstante ermitteln.
Zur Bestimmung des spezifischen Heizwertes wird eine bestimmte Menge eines Brennstoffes verbrannt und die dabei abgegebene Wärme indirekt bestimmt.

Wärmeaustausch zwischen Körpern

Kommen zwei Körper unterschiedlicher Temperatur in Kontakt und bleiben sie sich selbst überlassen, so erfolgt zwischen ihnen ein Wärmeaustausch und damit ein Temperaturausgleich. Es gilt das Grundgesetz des Wärmeaustausches, das folgendermaßen lautet:

Wenn zwei Körper unterschiedlicher Temperatur in engen Kontakt miteinander kommen, so gibt der Körper höherer Temperatur Wärme ab, der Körper niedrigerer Temperatur nimmt Wärme auf. Die vom Körper höherer Temperatur abgegebene Wärme ist genauso groß wie die vom Körper niedrigerer Temperatur aufgenommene Wärme.

Q ab = Q zu

Diesen Zusammenhang kann man nutzen, um z. B. die Mischungstemperatur zweier Wassermengen zu berechnen.

Innere Energie

Die innere Energie gibt an, wie groß die in einem abgeschlossenen System (Körper) gespeicherte Energie ist.
Formelzeichen: U
Einheit: ein Joule (1 J)
Sie ist die Gesamtenergie aller Teilchen (Atome, Moleküle) eines Körpers und setzt sich damit aus der Summe der Bewegungsenergien bei Translation, Rotation und Schwingungen, der potenziellen Energien und der Bindungsenergien zusammen.
Bei Gasen wird die innere Energie im Wesentlichen von den Bewegungsenergien der Teilchen bestimmt.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025