Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 3 Wärmelehre
  4. 3.5 Hauptsätze der Wärmelehre und Wärmekraftmaschinen
  5. 3.5.2 Wärmekraftmaschinen
  6. Wärmepumpe

Wärmepumpe

Wärmepumpen werden vor allem für die Heizung von Räumen und Gebäuden sowie für die Warmwassergewinnung genutzt. Dabei wird Erdwärme, die Wärme des Grundwassers oder die Wärme der Luft außerhalb des Gebäudes bei niedriger Temperatur aufgenommen und im Inneren des Gebäudes bei höherer Temperatur abgegeben. Dazu muss elektrische Energie zum Antrieb der Wärmepumpe zugeführt werden.
Das Grundprinzip einer Wärmepumpe wurde bereits um 1852 von dem englischen Physiker WILLIAM THOMSON (Lord KELVIN) gefunden. Intensiver genutzt werden Wärmepumpen aber erst seit etwa 1990.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Wärmepumpen werden vor allem für die Heizung von Räumen und Gebäuden sowie für die Warmwassergewinnung genutzt. Dabei wird Erdwärme, die Wärme des Grundwassers oder die Wärme der Luft außerhalb des Gebäudes bei niedriger Temperatur aufgenommen und im Inneren des Gebäudes bei höherer Temperatur abgegeben. Dazu muss elektrische Energie zum Antrieb der Wärmepumpe zugeführt werden.
Das Grundprinzip einer Wärmepumpe wurde bereits um 1852 von dem englischen Physiker WILLIAM THOMSON (1824-1907), der später zum Lord KELVIN ernannt wurde, gefunden. Es wird auch beim Kühlschrank angewendet. Intensiver genutzt werden Wärmepumpen aber erst seit etwa 1990. Sie sind in den letzten Jahren technisch erheblich weiterentwickelt worden.

Aufbau und Wirkungsweise einer Wärmepumpe

Nachfolgend sind der Aufbau und die Wirkungsweise einer Kompressionswärmepumpe dargestellt. Das ist die am häufigsten verwendete Art von Wärmepumpen. Daneben gibt es noch Absorptionswärmepumpen.
Die wichtigsten Bestandteile einer Kompressionswärmepumpe,
nachfolgend kurz Wärmepumpe genannt, sind ein System von
Rohrleitungen mit einem Arbeitsmittel, ein Verdichter (Kompressor), ein Verdampfer, ein Verflüssiger und ein Ventil (Expansionsventil, Drossel). Die Anordnung der Teile ist in Bild 2 dargestellt.

  • Aufbau einer Wärmepumpe

Der Verdampfer befindet sich außerhalb des Gebäudes, z. B. im Erdreich, im Grundwasser oder in der Luft (Bild 3). Die übrigen Teile befinden sich im Gebäude. Das Arbeitsmittel in den Rohrleitungen ist eine spezielle Flüssigkeit mit einer Siedetemperatur von -25 °C
bis -45 °C. Unter anderem wird auch Propan mit einer Siedetemperatur von -42,1 °C verwendet.

Im Verdampfer geht das Arbeitsmittel vom flüssigen in den gasförmigen Aggregatzustand über. Dazu ist Wärme (Verdampfungswärme) erforderlich, die der Umgebung (Erde, Wasser, Luft) entzogen wird.
Durch eine Rohrleitung gelangt das gasförmige Arbeitsmittel in den Verdichter. Das ist eine Pumpe, durch die das Gas komprimiert, also der Druck in ihm erhöht wird. Das Gas unter hohem Druck gelangt in den Verflüssiger.

Durch das Komprimieren des Gases erhöht sich seine Siedetemperatur. Es wird flüssig und gibt dabei Wärme (Kondensationswärme) ab. Diese Kondensationswärme wird genutzt, um Wasser in einem Heizkreislauf zu erwärmen, das dann z. B. zur Raumheizung verwendet wird.

Das unter hohem Druck stehende flüssige Arbeitsmittel gelangt nach der Wärmeabgabe zu einem Ventil, durch das der Druck erheblich verringert wird. Aufgrund des geringeren Drucks sinkt die Siedetemperatur wieder. Das Arbeitsmittel wird flüssig und gelangt dann wieder in den Verdampfer. Der Kreislauf beginnt von Neuem.

  • Zum Verdampfen wird die Umgebungswärme genutzt.

    G. Lattke, Berlin

Energiebilanz bei Wärmepumpen

Die Energiebilanz für eine Wärmepumpe zeigt Bild 4. Aus der Abbildung ist erkennbar: Die für den Antrieb des Verdichters erforderliche elektrische Energie ist wesentlich kleiner als die für Heizzwecke nutzbare Energie. Der Wirkungsgrad einer Wärmepumpe ist, bezogen auf diese Energien, größer als 1. Er liegt meist bei Werten zwischen 2,4 und 4,0. Dieser Wert wird bei Wärmepumpen als Leistungszahl bezeichnet.

Für die Nutzung von Wärmepumpen ist zu beachten, dass ihr Wirkungsgrad umso größer ist, je kleiner die Temperaturdifferenz zwischen der außen aufgenommenen und der innen abgegebenen Wärme ist. Er kann berechnet werden mit der Gleichung:

η = T ab T ab − T auf

Wärmepumpen sind deshalb besonders für Fußbodenheizungen geeignet, da in diesem Falle der Wirkungsgrad besonders groß ist.

Vorteile und Nachteile von Wärmepumpen

Die Vorteile von Wärmepumpen bestehen vor allem darin, dass

  • nicht erneuerbare Energieträger eingespart werden,
  • keine Emissionen von Kohlenstoffdioxid auftreten,
  • regenerative Wärmequellen (Erdwärme, Wärme der Luft) genutzt werden.

Die Nachteile von Wärmepumpen bestehen gegenwärtig vor allem darin, dass

  • ihre Herstellung und ihre Installation hohe Kosten verursachen,
  • der Einsatz von FCKW-freien und chlorfreien (klimawirksamen) Arbeitsmitteln noch nicht befriedigend geklärt ist,
  • beim Betrieb eine belästigende Geräuschentwicklung auftreten kann.
  • Energiebilanz bei einer Wärmepumpe
Lernhelfer (Duden Learnattack GmbH): "Wärmepumpe." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/physik/artikel/waermepumpe (Abgerufen: 02. September 2025, 16:15 UTC)

Suche nach passenden Schlagwörtern

  • Video
  • Lord Kelvin
  • Kompressionswärmepumpe
  • Ventil
  • Verdampfer
  • Arbeitsmittel
  • Kondensationswärme
  • Wärmepumpe
  • Verdichter
  • Nachteile von Wärmepumpen
  • Absorptionswärmepumpe
  • Verdampfungswärme
  • William Thomson
  • Kühlschrank
  • Leistungszahl
  • Wirkungsgrad
  • Vorteile von Wärmepumpen
  • Verflüssiger
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

James Watt

* 19.01.1736 in Greenrock bei Glasgow
† 19.08.1819 in Heathfield bei Birmingham

Er war ein schottischer Mechaniker und Naturforscher, war Universitätsmechaniker in Glasgow und dort mit der Wartung einer Dampfmaschine betraut. Überlegungen über die Verbesserung dieser Maschine führten ihn 1769 zur Erfindung einer Dampfmaschine mit getrenntem Kondensator, die sich als Antriebsmaschine durchsetzte.
Nach ihm ist heute die Einheit der Leistung benannt.

Wissenstest, Thermisches Verhalten von Körpern und Stoffen


Zum thermischen Verhalten von Körpern und Stoffen gehören die Längen- und Volumenänderung bei Temperaturänderung, die verschiedenen Aggregatzustandsänderungen sowie das Verhalten von Gasen, das unter Nutzung des Modells ideales Gas beschrieben wird. Im Test wird geprüft, inwieweit Grundkenntnisse über die genannten Inhalte vorhanden sind.

 

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Thermisches Verhalten von Körpern und Stoffen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Nicolas Léonard Sadi Carnot

* 01.06.1796 Paris
† 24.08.1832 Paris

Er war ein französischer Ingenieur und Physiker. Nach seinem Studium an der École Polytechnique diente er in der Armee NAPOLEONs als Ingenieuroffizier. Seine theoretischen Untersuchungen zur Wirkungsweise der Dampfmaschine hatten das Ziel, den Wirkungsgrad zu erhöhen und die Einführung der Dampfmaschinen in Frankreich zu fördern. Mit seiner berühmten Schrift „Betrachtungen über die bewegende Kraft des Feuers und die zur Entwicklung dieser Kraft geeigneten Maschinen“ begründete er die technische Thermodynamik.
Nach ihm ist der thermodynamische Kreisprozess benannt, der aus je zwei isothermen und adiabatischen Zustandsänderungen besteht und der den höchstmöglichen Wirkungsgrad bei Kreisprozessen hat.

Carnotscher Kreisprozess

Der Carnotsche Kreisprozess, bestehend aus je zwei isothermen und adiabatischen Zustandsänderungen, repräsentiert die „Takte“ einer ideal arbeitenden Wärmekraftmaschine. Dabei wird das Arbeitsmittel als ideales Gas betrachtet und die Prozessführung als reversible angenommen.

1. Takt: Durch Aufnahme von Wärme erfolgt eine isotherme Expansion. Es wird die Arbeit verrichtet.
2. Takt: Bei einer adiabatischen Expansion verringert sich die Temperatur. Hierbei wird von dem Gas arbeitet verrichtet, seine innere Energie verringert sich.
3. Takt: Für die isotherme Kompression muss Arbeit zugeführt werden. Die dabei entstehende Wärme wird an die Umgebung abgegeben.
4. Takt: Durch eine adiabatische Kompression wird die Temperatur erhöht und damit der Ausgangszustand wieder erreicht.

Nach dem 1. Hauptsatz der Thermodynamik ist die abgegebene mechanische Arbeit gleich der Änderung der Wärme in dem System. Die von den Zustandskurven eingeschlossene Fläche ist ein Maß für die abgegebene Arbeit.

Anders Celsius

* 27.11.1701 Uppsala
† 25.04.1744 Uppsala

Er war ein schwedischer Astronom und Physiker, entwickelte eine Temperaturskala, die Celsius-Skala, und führte eine Reihe von astronomischen Untersuchungen durch.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025