Direkt zum Inhalt

8 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Jakob Bernoulli

* 27. Dezember 1654 (6. Januar 1655) Basel
† 16. August 1705 Basel

JAKOB BERNOULLI gilt als einer der Hauptvertreter der Infinitesimalrechnung seiner Zeit. Gemeinsam mit seinem Bruder Johann entwickelte er den „Leibnizschen Calculus“ weiter.
Mit dem aus seinem Nachlass im Jahre 1713 herausgegebenen Buch „Ars conjectandi“ wurde JAKOB BERNOULLI zum Begründer einer Theorie der Wahrscheinlichkeitsrechnung. In diesem Werk wird u.a. die Anwendung der Kombinatorik auf Glücks- und Würfelspiele beschrieben, und das (schwache) Gesetz der großen Zahlen wird formuliert.

Artikel lesen

Kenngrößen der Binomialverteilung

Kenngrößen von Zufallsgrößen dienen deren quantitativer Charakterisierung. Wir betrachten im Folgenden binomialverteilte Zufallsgrößen.

Artikel lesen

Urnenmodelle

In der Wahrscheinlichkeitsrechnung spielt das Ziehen aus einer Urne mit verschiedenfarbigen, aber ansonsten gleichen Kugeln eine besondere Rolle. Es wird als ein gedankliches Modell zur Interpretation praktischer Aufgaben (insbesondere sogenannter Standardsituationen) genutzt.

Artikel lesen

Geometrische Verteilung

Die geometrische Verteilung ist ein Spezialfall der PASCALschen Verteilung, die ihren Namen zu Ehren BLAISE PASCALS (1623 bis 1662) erhielt.

Artikel lesen

Bernoulli-Versuche

Zufallsversuche mit genau zwei möglichen Ergebnissen, d. h. Vorgänge mit zufälligem Ergebnis, bei denen nur zwischen Erfolg (Treffer) und Misserfolg (Niete) unterschieden wird, heißen Bernoulli-Versuche.

Ist p die Wahrscheinlichkeit für einen Erfolg, so beträgt die Wahrscheinlichkeit für einen Misserfolg 1 – p.

Mehrstufige Bernoulli-Versuche bezeichnet man als Bernoulli-Ketten.

Artikel lesen

Wahrscheinlichkeiten, Berechnen

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Mathematik - Berechnen von Wahrscheinlichkeiten für k Erfolge bei einer Bernoulli-Kette".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Hypothesen und Entscheidungsfehler

Beurteilende Statistik setzt quantitatives Beschreiben von Grundgesamtheiten bzw. Stichproben voraus. Begründete Vermutungen über stochastische Eigenschaften von Grundgesamtheiten nennt man Hypothesen. Auf der Grundlage statistischer Tests wird entschieden, ob die zu überprüfende Hypothese abzulehnen (zu verwerfen) ist oder nicht.

Artikel lesen

Definition der Binomialverteilung

Wird ein BERNOULLI-Experiment n-mal durchgeführt, ohne dass sich die Erfolgswahrscheinlichkeit p ändert, so ist die zufällige Anzahl der Erfolge eine Zufallsgröße X, die die n + 1 Werte 0 ;    1 ;    2 ;    ... ;    n annehmen kann.
Nach der BERNOULLI-Formel gilt dann:

\(P({genau   k   Erfolge})=P(X=k)=(nk)⋅pk⋅(1−p)n−k=:Bn; p({k})\)

Daraus folgt die Definition der Binomialverteilung.

8 Suchergebnisse

Fächer
  • Mathematik (8)
Klassen
  • 5. Klasse (1)
  • 6. Klasse (1)
  • 7. Klasse (1)
  • 8. Klasse (1)
  • 9. Klasse (1)
  • 10. Klasse (1)
  • Oberstufe/Abitur (7)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025