Direkt zum Inhalt

3 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Erwartungswert

Der Erwartungswert einer Zufallsgröße charakterisiert deren Verteilung durch Angabe eines mittleren Wertes. Dieser muss unter den Werten der Zufallsgröße selbst nicht vorkommen.

Artikel lesen

Varianz

Varianz und Standardabweichung kennzeichnen die Streuung der Verteilung einer Zufallsgröße um den Erwartungswert E   ( X ) .
Die Varianz berechnet sich folgendermaßen   V   ( X ) = [ x 1 − E   ( X ) ] 2 ⋅ p 1 + [ x 2 − E   ( X ) ] 2 ⋅ p 2 + ... + [ x k − E   ( X ) ] 2 ⋅ p k
(wobei p 1 ,       p 2     ...     p k die Wahrscheinlichkeiten der auftretenden Werte x 1 ,       x 2     ...     x k der Zufallsgröße X sind).
Unter der Standardabweichung wird die Wurzel aus der Varianz verstanden.

Artikel lesen

Wahrscheinlichkeitsverteilung

Zufallsgrößen X sind dadurch gekennzeichnet, dass sie verschiedene Werte annehmen können, wobei jeder dieser Werte ein zufälliges Ereignis darstellt und mit einer bestimmten Wahrscheinlichkeit auftritt.
Die Funktion, die jedem Wert von X die Wahrscheinlichkeit für sein Eintreten zuordnet, wird Verteilung der Zufallsgröße bzw. Wahrscheinlichkeitsverteilung genannt.

3 Suchergebnisse

Fächer
  • Mathematik (3)
Klassen
  • 5. Klasse (3)
  • 6. Klasse (3)
  • 7. Klasse (3)
  • 8. Klasse (3)
  • 9. Klasse (3)
  • 10. Klasse (3)
  • Oberstufe/Abitur (1)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025