Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 9 Stochastik
  4. 9.3 Wahrscheinlichkeitsrechnung
  5. 9.3.4 Zufallsgrößen und ihre Verteilung
  6. Erwartungswert

Erwartungswert

Der Erwartungswert einer Zufallsgröße charakterisiert deren Verteilung durch Angabe eines mittleren Wertes. Dieser muss unter den Werten der Zufallsgröße selbst nicht vorkommen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Auch bei Wahrscheinlichkeitsverteilungen ist es (wie bei Häufigkeitsverteilungen) sinnvoll, Mittelwerte zu betrachten. Ein solcher ist der Erwartungswert einer Zufallsgröße, der deren Verteilung durch einen mittleren Wert charakterisiert.

Gegeben sei eine Zufallsgröße X mit folgender Verteilung:
 

Wert x 1 x 2 ... x k
Wahrscheinlichkeit p 1 p 2 ... p k


Dann nennt man die Zahl
  E   ( X ) = x 1 ⋅ p 1 + x 2 ⋅ p 2 + ... + x k ⋅ p k
den Erwartungswert von X.
Der Erwartungswert muss (wie die folgenden Beispiele zeigen) unter den Werten der Zustandsgröße nicht vorkommen.

Beispiel 1:
Als Erwartungswert der Zufallsgröße Augenzahl A beim Werfen eines idealen Würfels ergibt sich:
  E   ( A ) = 1 ⋅ 1 6 + 2 ⋅ 1 6 + 3 ⋅ 1 6 + 4 ⋅ 1 6 + 5 ⋅ 1 6 + 6 ⋅ 1 6                                         = 21 ⋅ 1 6 = 3,5

Beispiel 2:
Es wird mit einem gezinkten Würfel gewürfelt. Für die Wahrscheinlichkeitsverteilung der Augenzahl A gelte:
P ( 1 ) = 2 9 P ( 2 ) = P ( 3 ) = P ( 4 ) = P ( 5 ) = 1 6 P ( 6 ) = 1 9

Somit ergibt sich als Erwartungswert:
  E   ( A ) = 1 ⋅ 2 9 + 2 ⋅ 1 6 + 3 ⋅ 1 6 + 4 ⋅ 1 6 + 5 ⋅ 1 6 + 6 ⋅ 1 9                                         = 8 9 + 14 6 = 16 18 + 42 18 = 58 18 ≈ 3,22

Mithilfe des Erwartungswertes lässt sich der Gewinn beim Losverkauf oder einer
Tombola bewerten.

 

Lernhelfer (Duden Learnattack GmbH): "Erwartungswert." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/index.php/schuelerlexikon/mathematik/artikel/erwartungswert (Abgerufen: 20. May 2025, 17:37 UTC)

Suche nach passenden Schlagwörtern

  • diskret
  • Wahrscheinlichkeitsverteilung
  • Erwartungswert
  • Zustandsgröße
  • Verteilung
  • Wahrscheinlichkeit
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Jakob Bernoulli

 

JAKOB BERNOULLI, Schweizer Mathematiker
* 27. Dezember 1654 Basel
† 16. August 1705 Basel

JAKOB BERNOULLI gilt als einer der Hauptvertreter der Infinitesimalrechnung und Reihenlehre seiner Zeit. Gemeinsam mit seinem Bruder Johann entwickelte er den „Leibnizschen Calculus“ weiter.
Mit dem aus seinem Nachlass im Jahre 1713 herausgegebenen Buch „Ars conjectandi“ wurde JAKOB BERNOULLI zum Begründer einer Theorie der Wahrscheinlichkeitsrechnung. In diesem Werk wird u. a. die Anwendung der Kombinatorik auf Glücks- und Würfelspiele beschrieben und das Gesetz der großen Zahlen formuliert.

Bernoulli-Ketten

Wird ein Bernoulli-Versuch insgesamt n-mal unabhängig voneinander (hintereinander) durchgeführt, so spricht man von einer Bernoulli-Kette der Länge n. Mithilfe der bernoullischen Formel kann eine Aussage über die Wahrscheinlichkeit des Auftretens von k Erfolgen gemacht werden. Es ist:
  P ( genau k Erfolge ) = ( n k ) ⋅ p k ⋅ ( 1 − p ) n − k   ( k = 0 ;   1   ...   n )
Hierbei ist p die Erfolgswahrscheinlichkeit des Bernoulli-Versuches.

Bernoulli-Versuche

Zufallsversuche mit genau zwei möglichen Ergebnissen, d. h. Vorgänge mit zufälligem Ergebnis, bei denen nur zwischen Erfolg (Treffer) und Misserfolg (Niete) unterschieden wird, heißen Bernoulli-Versuche.

Ist p die Wahrscheinlichkeit für einen Erfolg, so beträgt die Wahrscheinlichkeit für einen Misserfolg 1 – p.

Mehrstufige Bernoulli-Versuche bezeichnet man als Bernoulli-Ketten.

Galton-Brett

Ein Galton-Brett dient zur Veranschaulichung von Binomialverteilungen. Es ist nach dem englischen Naturforscher Sir FRANCIS GALTON (1822 bis 1911), einem Vetter DARWINs, benannt. GALTON war vor allem Anthropologe und konstruierte zudem die sogenannte Galton-Pfeife.

Francis Galton

FRANCIS GALTON (1822 bis 1911), englischer Naturforscher und Schriftsteller
* 16. Februar 1822 Birmingham
† 17. Januar 1911 Haslemere

GALTON war besonders als Anthropologe tätig, er gilt u. a. als Begründer der Daktyloskopie. Zudem konstruierte er die nach ihm benannte Galton-Pfeife für Töne im oberen Frequenzbereich bzw. im Bereich des Ultraschalls.
Mit seinem Namen verbunden ist das sogenannte Galton-Brett, das zur Demonstration der Binomialverteilung verwendet wird.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025