Direkt zum Inhalt

5 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Die elektrische Spannung

Neben vielen anderen Anwendungen ist die Mathematik in der Physik für die Definition physikalischer Größen bedeutsam. Im Folgenden wird die Arbeit im radialsymmetrischen elektrischen Feld berechnet, woraus dann weitere Größen gewonnen werden.

Artikel lesen

Integration durch Partialbruchzerlegung

Lässt sich bei der Integration gebrochenrationaler Funktionen der Funktionsterm nicht durch eine einfache Division in eine Summe umwandeln, so kann die Integration durch Partialbruchzerlegung angewendet werden.

Ist der Integrand eine unecht gebrochenrationale Funktion, so wird diese zunächst durch Partialdivision in eine ganzrationale Funktion und eine echt gebrochenrationale Funktion zerlegt.

Den echt gebrochenrationalen Anteil schreibt man dann mittels Partialbruchzerlegung als eine Summe einfacher Teilbrüche.

Der Lösungsansatz für die Partialbruchzerlegung ist hierbei davon abhängig, ob die Funktion im Nenner einfache oder mehrfache, reelle oder komplexe Nullstellen hat.

Artikel lesen

Integration durch lineare Substitution

Während beim Differenzieren elementarer Funktionen wieder elementare Funktionen entstehen, gibt es zahlreiche elementare Funktionen, deren unbestimmte Integrale sich nicht durch elementare Funktionen ausdrücken lassen.
Scheinbar geringfügige Veränderungen im Funktionsterm erfordern u.U. völlig andere Lösungswege oder führen zu nicht mehr elementar integrierbaren Funktionen.

Als Beispiele seien die Funktionen f ( x ) = x   ⋅   sin   x         u n d         g ( x ) = x sin   x genannt:
Während die Funktion f mit der Methode der partiellen Integration elementar integrierbar ist, kann man das Integral der Funktion g nicht mit elementaren Mitteln berechnen. Ähnlich verhalten sich die Funktionen f ( x ) = x   ⋅   e x         u n d         g ( x ) = e x x .

Bei der Integration von Produkten von Funktionen oder von verketteten Funktionen findet häufig die Substitutionsmethode Anwendung.

Artikel lesen

Integration durch nichtlineare Substitution

Ist im Integranden eines Integrals eine verkettete Funktion und außerdem noch die Ableitungsfunktion der inneren Funktion als Faktor vorhanden, so kann die Integration durch nichtlineare Substitution erfolgen.

Artikel lesen

Partielle Integration

Im Unterschied zur Integration einer Summe von Funktionen, für die es eine einfache Integrationsregel (Summenregel) gibt, gestaltet sich das Integrieren eines Produktes von Funktionen weitaus schwieriger.
In einigen Fälle führt die Integration durch Substitution zum Ziel, doch in vielen Fällen kann man keine geeignete Substitution angeben.
Eine einfache Umkehrung der Differenziationregel für Produkte von Funktionen ist nicht möglich, jedoch bietet diese Regel den Zugang zu einem speziellen Integrationsverfahren, das auf der Produktregel der Differenzialrechnung fußt.
Es gilt die folgende Regel der partiellen Integration.

5 Suchergebnisse

Fächer
  • Mathematik (5)
Klassen
  • Oberstufe/Abitur (5)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025