Direkt zum Inhalt

7 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Gerade und ungerade Funktionen

Eine Funktion f heißt gerade Funktion, wenn mit x auch (–x) zu ihrem Definitionsbereich gehört und für alle Argumente x gilt:
  f ( −   x ) = f ( x )
Eine Funktion f heißt ungerade Funktion, wenn mit x auch (–-x) zu ihrem Definitionsbereich gehört und für alle Argumente x gilt:
  f ( −   x ) = −   f ( x )

Artikel lesen

Potenzfunktionen, allgemein

Funktionen mit Gleichungen
der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ )
heißen Potenzfunktionen.
Es ist zweckmäßig, eine Einteilung der Potenzfunktionen in Abhängigkeit vom Exponenten n vorzunehmen.

Artikel lesen

Ungerade Potenzfunktionen

Funktionen mit Gleichungen der Form y = x n     ( x   ∈ ℝ ,     n ∈   ℤ ) heißen Potenzfunktionen.
Ist der Exponent n in y = f ( x ) = x n eine ungerade Zahl (n = 2k + 1 mit k ∈ ℤ ), so liegen ungerade Funktionen vor.

Artikel lesen

Symmetrie

Eine Figur heißt symmetrisch genau dann, wenn sie bei einer von der identischen Abbildung verschiedenen Bewegung auf sich selbst abgebildet werden kann.

Artikel lesen

Periodizität von Funktionen

In Natur und Technik treten periodische Vorgänge auf. Zu ihrer Beschreibung sind die trigonometrischen Funktionen von besonderer Bedeutung. Diese Klasse von Funktionen wird durch eine weitere Eigenschaft charakterisiert, die Periodizität.

Die Graphen periodischer Funktionen sind verschiebungssymmetrisch, sie gehen durch Verschiebung längs der x-Achse mit einer Verschiebungsweite p oder k ⋅ p in sich über.

Die bekanntesten periodischen Funktionen sind die trigonometrischen Funktionen. Die Sinusfunktion und die Kosinusfunktion sind periodisch mit der Periode 2   π .

Artikel lesen

Symmetrie von Funktionen

Das Zeichnen der Graphen von Funktionen lässt sich durch das Vorhandensein von Symmetrie(n) stark vereinfachen.

Artikel lesen

Potenzfunktionen

Unter Potenzfunktionen werden Funktionen mit Gleichungen der folgenden Form verstanden:
  y = f ( x ) = x n     ( x ∈ ℝ ;       n ∈ ℤ \ { 0 } )
Ihre Graphen nennt man Parabeln ( n > 0 ) bzw. Hyperbeln ( n < 0 ) n-ter Ordnung.

7 Suchergebnisse

Fächer
  • Mathematik (7)
Klassen
  • 5. Klasse (4)
  • 6. Klasse (4)
  • 7. Klasse (4)
  • 8. Klasse (4)
  • 9. Klasse (4)
  • 10. Klasse (4)
  • Oberstufe/Abitur (3)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025