Direkt zum Inhalt

5 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Kongruenzabbildungen

Eine Kongruenzabbildung (Bewegung) ist eine umkehrbar eindeutige Abbildung der einen Figur F 1 auf eine andere Figur F 2 .
Zwei Figuren F 1 und F 2 sind zueinander kongruent (deckungsgleich) genau dann, wenn sie die gleiche Form und Größe haben.
Schreibweise: F 1 ≅ F 2
Kongruente Figuren lassen sich durch eine Verschiebung, eine Spiegelung, eine Drehung oder eine Zusammensetzung von ihnen aufeinander abbilden.

Artikel lesen

Bewegungen, Nacheinanderausführen

Die Nacheinanderausführung zweier Bewegungen ist wieder eine Bewegung.
Die Nacheinanderausführung zweier Verschiebungen ist wieder eine Verschiebung.
Die Nacheinanderausführung zweier Drehungen um das gleiche Drehzentrum ist wieder eine Drehung um dieses Drehzentrum.
Die Nacheinanderausführung zweier Spiegelungen an einander im Punkt S schneidenden Geraden g und h ist eine Drehung um S.
Die Nacheinanderausführung zweier Spiegelungen an zueinander parallelen Geraden g und h ist eine Verschiebung senkrecht zu den beiden Geraden.

Artikel lesen

Funktionenscharen

In Funktionsgleichungen können Parameter in additiver und multiplikativer Verknüpfung mit Funktionstermen bzw. mit der Funktionsvariablen auftreten. Aus einer Funktionsgleichung y = f   ( x ) entstehen so z. B. die Gleichungen y = f   ( x ) + c , y = f   ( x + d ) , y = a ⋅ f   ( x ) oder y = f   ( b ⋅ x ) .
Diese Parameter haben Einfluss auf Eigenschaften und Verlauf der Graphen der Funktion.

Artikel lesen

Kongruenz von Figuren

Zwei Figuren F   1 und F   2 sind zueinander kongruent (deckungsgleich) genau dann, wenn sie die gleiche Form und Größe haben.
In zueinander kongruenten Figuren sind alle einander entsprechenden Strecken und Winkel gleich groß.
Kongruente Figuren lassen sich durch eine Verschiebung, eine Spiegelung, eine Drehung oder eine Zusammensetzung von ihnen aufeinander abbilden.

Artikel lesen

Verschiebung

Eine Verschiebung A B → (Parallelverschiebung, Translation) ist eine eineindeutige Abbildung der Ebene auf sich selbst, bei der für das Bild P' jedes Punktes P gilt:
P P ' ∥ A B und A P ∥ B P '
A B → wird als Verschiebungspfeil bezeichnet. P P → ' hat stets die gleiche Länge und Richtung sowie den gleichen Richtungssinn wie A B → .

5 Suchergebnisse

Fächer
  • Mathematik (5)
Klassen
  • 5. Klasse (5)
  • 6. Klasse (5)
  • 7. Klasse (5)
  • 8. Klasse (5)
  • 9. Klasse (5)
  • 10. Klasse (5)
  • Oberstufe/Abitur (5)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025