Direkt zum Inhalt

5 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

David Hilbert

DAVID HILBERT (1862 bis 1943), deutscher Mathematiker
* 23. Januar 1862 Königsberg
† 14. Februar 1943 Göttingen

DAVID HILBERT zählt zu den bedeutendsten Mathematikern zu Beginn des 20. Jahrhunderts. Er wirkte fast 40 Jahre in Göttingen, dem damaligen mathematischen Zentrum Deutschlands.
HILBERT beschäftigte sich mit vielen Teilgebieten der Mathematik, u. a. mit der axiomatischen Grundlegung der Geometrie, Problemen der Zahlentheorie sowie mit Fragen der Relativitätstheorie. Auf dem Internationalen Mathematikerkongress 1900 in Paris formulierte er seine 23 berühmten mathematischen Probleme, denen sich die Mathematiker verstärkt zuwenden sollten. Einige dieser Probleme sind bis heute ungelöst.

Artikel lesen

Möndchen des Hippokrates

HIPPOKRATES VON CHIOS (griechischer Mathematiker, um 440 v. Chr.) war der berühmteste Geometer des 5. Jh. v. Chr. Von ihm stammt nach Überlieferung die erste zusammenfassende Darstellung geometrischen Wissens seiner Zeit unter dem Titel „Elemente“ nach dem Schema Voraussetzung, Satz und Beweis.
Eng verbunden ist der Name HIPPOKRATES auch mit zwei berühmten Problemen der Mathematik, der Quadratur des Kreises und der Verdopplung des Würfels.

Artikel lesen

Quadratur des Kreises

Unter der Quadratur des Kreises versteht man die zeichnerische Umwandlung einer Kreisfläche in ein flächeninhaltsgleiches Quadrat nur mithilfe von Zirkel und Lineal.
Die Quadratur des Kreises nur mit Zirkel und Lineal ist unmöglich.
Diese geometrische Konstruktion gehört neben der Dreiteilung eines beliebigen Winkels und der Verdopplung eines Würfels zu den klassischen Problemen der Geometrie.

Artikel lesen

Johann Heinrich Lambert

* 26. August 1728 Mülhausen (Mulhouse)
† 25. September 1777 Berlin

JOHANN HEINRICH LAMBERT war Mitglied der Berliner Akademie der Wissenschaften. Seine Arbeiten auf mathematischem Gebiet beschäftigten sich u.a. mit der Irrationalität der Zahl π , den hyperbolischen Funktionen sowie dem euklidischen Parallelenaxiom.

Artikel lesen

Reelle Zahlen

Der Bereich der rationalen Zahlen und der Bereich der irrationalen Zahlen bilden zusammen den Bereich der reellen Zahlen.
Reelle Zahlen lassen sich auf der Zahlengeraden darstellen, dabei gehört zu jeder reellen Zahl genau ein Punkt und zu jedem Punkt genau eine reelle Zahl.
Für das Rechnen mit reellen Zahlen gelten im Prinzip die gleichen Regeln und Gesetze wie im Bereich der rationalen Zahlen. Anstelle mit reellen Zahlen rechnet man häufig mit deren rationalen Nährungswerten.

5 Suchergebnisse

Fächer
  • Mathematik (5)
Klassen
  • 5. Klasse (3)
  • 6. Klasse (3)
  • 7. Klasse (3)
  • 8. Klasse (3)
  • 9. Klasse (3)
  • 10. Klasse (3)
  • Oberstufe/Abitur (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025