Direkt zum Inhalt

4 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Carl Friedrich Gauß

* 30. April 1777 Braunschweig
† 23. Februar 1855 Göttingen

Der oft als „Princeps mathematicorum“ (Fürst der Mathematik) bezeichnete CARL FRIEDRICH GAUSS erzielte bahnbrechende Leistungen in Mathematik, Physik, Astronomie und Geodäsie.
Auf mathematischem Gebiet beschäftigte er sich vor allem mit Probemen der Zahlentheorie und Algebra sowie mit Fragen der numerischen Mathematik. Durch neue Berechnungsmethoden schuf er die Grundlagen für eine exakte Bestimmung der Planetenbahnen.
Gemeinsam mit dem Physiker WILHELM WEBER trug GAUSS wesentlich zur Erforschung des Erdmagnetismus und zur Aufstellung eines absoluten Maßsystems bei. Weitere erwähnenswerte Leistungen sind die Bestimmung der Lage der Magnetpole der Erde sowie die Entwicklung des elektromagnetischen Telegrafen.

Artikel lesen

Der Zentrale Grenzwertsatz

Ausgehend von der Erfahrung, dass viele Alltagsphänomene, die sich aus unabhängig voneinander wirkenden kleinen Komponenten zusammensetzen, annähernd normalverteilt sind, richtete sich das Augenmerk mehrerer Mathematikergenerationen vor allem auf die Frage, welche Bedingungen man dafür zu fordern hat.

Artikel lesen

Normalverteilung (Gauß-Verteilung)

Auf der Suche nach „dem durchschnittlichen, dem normalen Menschen“ (l' homme moyen) ließ der auf vielen Gebieten tätige belgische Wissenschaftler LAMBERT ADOLPHE JACQUES QUÉTELET (1796 bis 1874) in den 30er Jahren des 19. Jahrhunderts biometrische Messungen in großem Umfang durchführen. In vielen Fällen wurde dabei seine Vorstellung bestätigt, dass die Häufigkeitsverteilung der gemessenen Werte (etwa zum Brustumfang) einer symmetrischen Glockenkurve entspricht. Das mag wohl auch ein wichtiger Grund dafür gewesen sein, dieser gleichsam als naturgemäß angesehenen Verteilung den Namen Normalverteilung zu geben, wobei diese Bezeichnung auch zu allerlei Fehldeutungen führte – vor allem dann, wenn alles nicht Normalverteilte als anormal eingestuft wurde.

Artikel lesen

Standardnormalverteilung

Eine Normalverteilung N ( μ ;   σ 2 ) wird vollständig bestimmt durch ihren Erwartungswert μ und ihre Streuung σ 2 . Es liegt deshalb die Frage nahe, ob man eine beliebige Normalverteilung in eine spezielle Normalverteilung transformieren kann – und zwar in eine mit solchen Parametern, die den Termen ihrer Dichte- und Verteilungsfunktion eine möglichst einfache Gestalt geben. Für eine ( 0 ;   1 ) -normalverteilte Zufallsgröße wäre dies der Fall:
Für die Werte μ = 0       u n d       σ = 1 erhält man als Spezialfall die Standardnormalverteilung.

4 Suchergebnisse

Fächer
  • Mathematik (4)
Klassen
  • Oberstufe/Abitur (4)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025