Direkt zum Inhalt

4 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Bruchgleichungen, Lösen

Ein Term wird Bruchterm genannt, wenn sein Nenner eine Variable enthält.
Eine Gleichung bzw. Ungleichung wird Bruchgleichung bzw. Bruchungleichung genannt, wenn sie mindestens einen Bruchterm enthält.

Bruchgleichungen lassen sich folgendermaßen lösen:

  1. Es wird der Hauptnenner der Bruchgleichung z. B. durch
    Primfaktorzerlegung oder durch Faktorisierung bestimmt.
  2. Beide Seiten der Bruchgleichung werden mit dem Hauptnenner multipliziert.
  3. Auf beiden Seiten werden die Brüche gekürzt.
  4. Die neue Gleichung wird mit den bekannten Schritten für
    äquivalentes Umformen gelöst.
  5. Es muss geprüft werden, ob die Lösung der neuen Gleichung auch zur Definitionsmenge der Bruchgleichung gehört.
Artikel lesen

Bruchungleichungen, Lösen

Ungleichungen, die Bruchterme enthalten, werden Bruchungleichungen genannt.
Ein Beispiel für eine Bruchungleichung ist: x + 2 x − 5 > 0
Um alle Lösungen dieser Bruchungleichung zu finden, müssen zwei Fälle unterschieden werden, denn es gibt zwei Möglichkeiten, damit ein Bruch größer als null ist:

  1. Der Zähler und der Nenner sind größer als null.
  2. Der Zähler und der Nenner sind kleiner als null.

Beide Fälle müssen untersucht werden, um alle Lösungen der Bruchungleichung zu finden.

Artikel lesen

Elektrische Hausinstallation

Elektrische Leitungen in Häusern müssen so sicher installiert sein, dass es zu keinen Gefährdungen des Menschen kommen kann, auch wenn ein Gerät oder eine Leitung einmal defekt sind. Deshalb werden an die Hausinstallation eine Reihe von grundlegenden Anforderungen gestellt.

Artikel lesen

Erweitern und Kürzen

Beim Erweitern von Brüchen werden Zähler und Nenner mit der gleichen von 0 und 1 verschiedenen Zahl multipliziert.
Beim Kürzen von Brüchen werden Zähler und Nenner durch die gleiche von 0 und 1 verschiedene Zahl dividiert.
Im Berechnungsbeispiel können beliebige gemeine Brüche erweitert oder gekürzt werden.

4 Suchergebnisse

Fächer
  • Mathematik (3)
  • Physik (1)
Klassen
  • 5. Klasse (4)
  • 6. Klasse (4)
  • 7. Klasse (4)
  • 8. Klasse (4)
  • 9. Klasse (4)
  • 10. Klasse (4)
  • Oberstufe/Abitur (1)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025