Direkt zum Inhalt

6 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Bahnformen und Energie von Satelliten

Künstliche Satelliten können sich auf sehr unterschiedlichen Bahnen um die Erde oder zu anderen Himmelskörpern hin bewegen. Dabei handelt es sich um kreisförmige, elliptische oder parabelförmige Bahnen, die aber durch Triebwerke oder durch den Einfluss von Himmelskörpern verändert werden können.
Bei interplanetaren Flugbahnen sind die HOHMANN-Bahnen von besonderem Interesse.
Bei Swing-by-Manövern nutzt man das Gravitationsfeld und die Eigenbewegung von Himmelskörpern dazu, die Bahn und die Bewegung von Satelliten zu beeinflussen.

Artikel lesen

Gleichförmige Kreisbewegung

Eine gleichförmige Kreisbewegung liegt vor, wenn sich ein Körper immer mit dem gleichen Betrag der Geschwindigkeit auf einer kreisförmigen Bahn bewegt.
Die gleichförmige Kreisbewegung ist eine beschleunigte Bewegung, da sich ständig die Richtung der Geschwindigkeit ändert.

Artikel lesen

Gravitationskräfte und Bewegungen

Planeten, Monde und künstliche Satelliten bewegen sich unter dem Einfluss von Gravitationskräften auf näherungsweise kreisförmigen oder elliptischen Bahnen. Viele Kometen bewegen sich auf parabolischen Bahnen. Die Bahnform wird durch die wirkenden Gravitationskräfte und die Geschwindigkeit des Körpers bestimmt. Ein besonders einfacher Zusammenhang besteht bei kreisförmigen Bahnen zwischen der für eine gleichförmige Kreisbewegung erforderlichen konstanten Radialkraft und der wirkenden Gravitationskraft.

Artikel lesen

Gravitation und Gravitationsgesetz

Alle Körper ziehen sich aufgrund ihrer Massen gegenseitig an. So zieht z. B. die Erde den Mond an. Umgekehrt zieht auch der Mond die Erde an.
Die gegenseitige Anziehung von Körpern aufgrund ihrer Massen wird Massenanziehung oder Gravitation (gravis, lat.: schwer) genannt. Die dabei wirkenden Kräfte werden als Schwerkräfte oder als Gravitationskräfte bezeichnet.
Die Gravitationskraft zwischen zwei Körpern kann mit dem Gravitationsgesetz berechnet werden. Sie ist umso größer,

  • je größer die Massen der Körper sind und
  • je kleiner der Abstand ihrer Massenmittelpunkte voneinander ist.
Artikel lesen

Kräfte bei der Kreisbewegung

Welche Kräfte bei einer Kreisbewegung wirken, hängt davon ab, welches Bezugssystem man zugrunde legt. Von einem Inertialsystem (unbeschleunigtes, ruhendes Bezugssystem) aus beschrieben gilt:

Damit sich ein Körper auf einer Kreisbahn bewegt, muss auf ihn eine Kraft in Richtung Zentrum der Kreisbewegung wirken. Diese Kraft wird als Radialkraft bezeichnet. Sie bewirkt die Radialbeschleunigung und hat den Betrag:

F r = m ⋅ v 2 r = m ⋅ ω 2 ⋅ r = m ⋅ 4 π 2 ⋅ r T 2 = m ⋅ 4 π 2 ⋅ r ⋅ n 2

Zu dieser Radialkraft existiert nach dem Wechselwirkungsgesetz eine gleich große, entgegengesetzt gerichtete Gegenkraft, die keine besondere Bezeichnung trägt.
Von einem mitrotierenden (beschleunigten) Bezugssystem aus stellt sich der Sachverhalt anders dar: Auf einen Körper wirkt eine radial nach außen gerichtete Trägheitskraft, die als Zentrifugalkraft bezeichnet wird.

Artikel lesen

Kräfte und ihre Messung

Der Begriff Kraft wird im Alltag und in der Physik in vielfältiger Weise verwendet. Während der Alltagsbegriff mit unterschiedlichen Begriffsinhalten genutzt wird, ist die physikalische Größe Kraft eindeutig definiert:
Die Kraft gibt an, wie stark ein Körper bewegt oder verformt wird. Sie ist eine Wechselwirkungsgröße und eine vektorielle (gerichtete) Größe. Die Wirkung einer Kraft ist abhängig von ihrem Betrag, ihrer Richtung und ihrem Angriffspunkt.


Formelzeichen: F → Einheit: ein Newton (1 N) 1 N = 1 kg ⋅ m s 2
Man unterscheidet u.a. elektrische Kräfte, magnetische Kräfte, Reibungskräfte, Druckkräfte, Radialkräfte, Gewichtskräfte, Schubkräfte, Spannkräfte und Zugkräfte, Adhäsionskräfte und Kohäsionskräfte, innere Kräfte und äußere Kräfte voneinander.

6 Suchergebnisse

Fächer
  • Physik (6)
Klassen
  • 5. Klasse (3)
  • 6. Klasse (3)
  • 7. Klasse (3)
  • 8. Klasse (3)
  • 9. Klasse (3)
  • 10. Klasse (3)
  • Oberstufe/Abitur (6)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025