Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Biologie Abitur
  3. 2 Grundbausteine des Lebens
  4. 2.1 Kohlenstoff das Element des Lebens
  5. 2.1.3 Die Vielfalt der Kohlenstoffverbindungen ermöglicht das Leben
  6. Alkene

Alkene

Alkene sind Bestandteil des Erdgases bzw. Erdöls. Sie enthalten eine Doppelbindung im Molekül, d. h. zwischen zwei Kohlenstoffatomen im Molekül sind zwei gemeinsame Elektronenpaare ausgebildet. Alkene zählen daher zu den sogenannten „ungesättigten“ Kohlenwasserstoffen. Wegen dieser Doppelbindung sind sie im Vergleich zu den Alkanen sehr reaktiv, da die Doppelbindung leicht angegriffen werden kann und typische Reaktionen bedingt. Alkene bilden homologe Reihen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Alkene (Olefine), ungesättigte Kohlenwasserstoffe

Die Alkene werden in der technischen oder älteren Literatur oft auch Olefine genannt. Die Bezeichnung rührt daher, dass Ethen mit Halogenen zu einer öligen, wasserunlöslichen Flüssigkeit, z. B. mit Brom zu 1,2-Dibromethan, reagiert (lat.: gaz olefinant = Öl bildendes Gas).

Alkene gehören zu den Kohlenwasserstoffen, bestehen also nur aus den Elementen Kohlenstoff und Wasserstoff. Da die Alkene in ihren Molekülen zwischen zwei Kohlenstoffatomen eine Doppelbindung besitzen, haben sie generell zwei Wasserstoffatome weniger als die entsprechenden Alkane. Die Doppelbindung ist im Namen an der Endung -en erkennbar. Die allgemeine Formel der Alkene lautet C n H 2 n . Alkene bilden genau wie die Alkane Isomere. Die Anzahl der möglichen Isomeren ist sogar noch größer als bei den Alkanen.

Bedingt durch ihren Bau, weisen die Alkene typische Eigenschaften auf. Genau wie die Alkane sind sie schwer bzw. gar nicht in Wasser löslich.

Alkene sind brennbar. Da sie die Elemente Kohlenstoff und Wasserstoff enthalten, entstehen bei vollständiger Verbrennung Kohlenstoffdioxid und Wasser.

Additionsreaktionen

Besonders typisch für die Alkene sind jedoch Additionsreaktionen. Dabei werden Atome oder Atomgruppen an die Moleküle der Alkene angelagert. Aufgrund der Doppelbindung verläuft die Reaktion in typischer Art und Weise. An die Moleküle der Alkene können ganz unterschiedliche Atome angelagert werden. Handelt es sich um Wasserstoffatome, bezeichnet man diese spezielle Addition als Hydrierung. Dabei bilden sich als Reaktionsprodukte Alkane:

Bild

Wichtig ist auch die Addition von Halogenen, insbesondere die Addition von Brom. Diese Reaktion gilt gleichzeitig als Nachweis von Mehrfachbindungen. Sichtbares Merkmal dieser Reaktion ist die Entfärbung von Brom bzw. Bromwasser bei Normalbedingungen und ohne zusätzliche Energiezufuhr.

Bild

Bild

Polymerisation

Große Bedeutung in der chemischen Industrie hat die Polymerisation, ebenfalls eine spezielle Form der Additionsreaktion. Sie bildet die Grundlage für die Herstellung vieler Kunststoffe. Beispielsweise können sich Ethenmoleküle durch fortgesetzte Addition zu langen Molekülen vereinigen. Dabei bildet sich Polyethen (Polyethylen).

Bild

Nicht so typisch, aber möglich sind Substitutionsreaktionen und Eliminierungen.

Homologe Reihe der Alkene

Genauso wie die anderen Kohlenwasserstoffe bilden auch Alkene homologe Reihen. Meist betrachtet man die homologe Reihe der Alkene, die eine Doppelbindung zwischen den ersten beiden Kohlenstoffatomen aufweisen. Das erste Glied dieser Reihe ist der C 2 -Kohlenwasserstoff Ethen (Ethylen). Ethen, Propen (Propylen) und Buten sind gasförmig, höhere Homologe bis 15 Kohlenstoffatomen sind bei Raumtemperatur (25 °C) flüssig, Alkene mit noch längerer Kohlenstoffkette sind fest.

Namevereinfachte StrukturformelSummenformelSchmelztemperaturSiedetemperatur
Ethen C H 2     =   C H 2 C 2 H 4 -169,5 °C-103,9 °C
Propen C H 2     =   C H   −   C H 3 C 3 H 6 -185,2 °C-47 °C
But-1-en C H 2     = C H   −   C H 2   − C H 3 C 4 H 8 -190 °C6,1 °C
Pent-1-en C H 2     =   C H   −   C H 2   − C H 2   − C H 3 C 5 H 10 -138 °C30 °C
Hex-1-en C H 2     =   C H   −   [ C H 2 ] 2   − C H 2   − C H 3 C 6 H 12 -98,5 °C63,5 °C
Oct-1-en C H 2     =   C H   −   [ C H 2 ] 4   − C H 2   − C H 3 C 8 H 16 -104 °C123 °C


Die Homologen weisen aufgrund ähnlicher Strukturmerkmale ähnliche Eigenschaften auf. Da die Kettenlänge innerhalb der homologen Reihe zunimmt, ergeben sich auch abgestufte Eigenschaften (siehe Tab.).

Herstellung der Alkene

Obwohl die Alkene in den Rohstoffen der Erde (Erdöl, Erdgas) vorkommen, kann man sie auch im Labor herstellen. Dies soll nun am Beispiel des Ethens gezeigt werden.

Im Laboratorium lässt sich Ethen durch Erhitzen von Ethanol mit konzentrierter Schwefelsäure darstellen. Die Ursache dafür ist die stark wasserentziehende Wirkung von konzentrierter Schwefelsäure. Anstelle der konzentrierten Säure kann auch ein Katalysator eingesetzt werden. Aus dem Ethanol wird dadurch ein Molekül Wasser abgespalten und es entsteht eine Doppelbindung.

Die unterschiedlichen Reaktionsschritte kann man in einer Gesamtgleichung zusammenfassen.

CH3CH2OH → CH2=CH2 + H2O

In der Industrie gewinnt man Alkene allerdings durch thermisches Cracken aus dem Erdöl, bzw. dem Rohbenzin. Dabei werden unter Normaldruck bei ca. 1 000 °C (1 275 K) die Molekülketten der höheren Alkane aus der Benzinfraktion in kleinere Stücke „gebrochen“ (gecrackt). Diesen Vorgang nennt man Pyrolyse.

C 8 H 18       →       C 3 H 8   +   C 3 H 6   +   C 2 H 4

oder

C 8 H 18       →       C 4 H 10   +   2   C 2 H 4

Aus Ethan entsteht dann bei diesen Bedingungen durch thermische Dehydrierung (Wasserabspaltung) Ethen.

Lernhelfer (Duden Learnattack GmbH): "Alkene." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/biologie-abitur/artikel/alkene (Abgerufen: 20. May 2025, 05:43 UTC)

Suche nach passenden Schlagwörtern

  • Ethylen
  • Alkene
  • Propylen
  • Olefine
  • Additionsreaktion
  • Ethen
  • Rohbenzin
  • thermisches Cracken
  • Buten
  • Polymerisation
  • Propen
  • Kohlenwasserstoffe
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Abgasreinigung in der Industrie

Die Abgase von Kraftwerken enthalten als Haupbestandteile Kohlenstoffdioxid, Schwefeldioxid, Stickoxide und Staub. Um die Emission dieser Umweltschadstoffe zu reduzieren wurden verschiedene Verfahren zur Reinigung der industriellen Abgase entwickelt, die je nach Bedarf kombiniert eingesetzt werden können. Das DeNOx-Verfahren dient zur Beseitigung der Stickoxide (NO X ) und in der Rauchgasentschwefelung wird das Schwefeldioxid entfernt.
Zur Entfernung des Schwefeldioxides aus dem Abgas der Schwefelsäure-Herstellung wurde ein spezielles Verfahren entwickelt, um das SO 2 zurückzugewinnen und wieder dem Produktionskreislauf zuzuführen.

Entstehung und Verwendung von Braunkohle und Steinkohle

Kohle ist im Laufe vieler Millionen Jahre aus abgestorbenen Pflanzen entstanden, die in tiefen Erdschichten hohen Drücken und Temperaturen ausgesetzt waren, was zum Prozess der Inkohlung führte.
Im Verlauf der Inkohlung entstand zunächst Torf, dann Braunkohle, Steinkohle und schließlich Grafit.

Braunkohle wird meist im Tagebau abgebaut und hauptsächlich in Kraftwerken zur Strom- und Wärmeerzeugung genutzt.

Steinkohle wird z. B. im Ruhrgebiet unter Tage abgebaut und wird hauptsächlich zu Koks weiterverarbeitet, der u. a. zur Eisenherstellung verwendet wird. Der Steinkohleteer, der als Nebenprodukt bei der Verkokung entsteht, ist ein wichtiger Ausgangsstoff für die chemische Industrie, aus ihm lassen sich Aromaten und Phenole isolieren, die zur Herstellung von Kunststoffen und Farbstoffen verwendet werden.

Sowohl Braunkohle als auch Steinkohle können zur Herstellung von Ammoniak und Methanol dienen, indem aus Kohle entsprechendes Synthesegas erzeugt wird. Außerdem sind durch Kohlehydrierung Benzine herstellbar.

Karl Waldemar Ziegler

* 26.11.1898 in Helsa (Hessen)
† 11.08.1973 in Mülheim a. d. Ruhr

Karl Waldemar Ziegler war ein deutscher Chemiker. Er erforschte freie organische Radikale, Fettalkohole und metallorganische Verbindungen, z. B. Tetraethylblei. Die von ihm entdeckten metallorganischen Mischkatalysatoren auf Titanbasis wurden und werden zur industriellen Herstellung von Plasten, z. B. Polyethylen (PE) und Polypropylen (PP) verwendet. Für seine Erkenntnisse zur Chemie der Polymere erhielt Ziegler 1963 gemeinsam mit Giulio Natta den Nobelpreis für Chemie.

Methan

Methan ist die organische Verbindung mit der einfachsten Struktur. Die Moleküle sind aus einem Kohlenstoffatom und vier Wasserstoffatomen aufgebaut. Methan ist das erste Glied der homologen Reihe der Alkane.
Das Gas ist Hauptbestandteil des Erdgases und wird hauptsächlich als Energieträger verwendet. Außerdem nutzt man es als Ausgangsstoff zur Herstellung von Ammoniak, Methanol und Halogenalkanen.
Methan ist immer für eine Überraschung gut, ob es als Sumpfgas für Legenden von Irrlichtern sorgte, als schlagende Wetter den Schrecken von Bergbauarbeitern bildet oder als Methanhydrat einerseits Euphorie, andererseits Befürchtungen um unser Klima auslöst.

Kurt Alder

* 10.07.1902 in Königshütte (Schlesien)
† 20.06.1958 in Köln

Kurt Alder war ein deutscher Chemiker. Er erforschte die Stereochemie von organischen Verbindungen und fand neue Möglichkeiten zur Synthese von Polymeren. Eines der wichtigsten Syntheseverfahren ist auch heute noch die „Diels-Alder-Reaktion“, eine Synthese von Dienen; Kohlenwasserstoffen mit zwei Doppelbindungen. Das Insektizid „Aldrin“, nach Alder benannt, ist heute wegen seiner starken Giftigkeit in Deutschland verboten. Kurt Alder erhielt gemeinsam mit seinem Lehrer Otto Diels 1950 den Nobelpreis für Chemie.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025