Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Biologie Abitur
  3. 3 Stoffwechsel und Energieumsatz
  4. 3.4 Aufbauender Stoffwechsel
  5. 3.4.2 Chemosynthese nutzt Energie chemischer Reaktionen
  6. Chemosynthese (Chemolithoautotrophie)

Chemosynthese (Chemolithoautotrophie)

Chemolithoautotrophie (auch Chemosynthese) ist eine Form des chemotrophen Energiestoffwechsels (Chemotrophie), bei dem anorganische Verbindungen oder Ionen die Reduktionsäquivalente für den Energiegewinn liefern. Chemosynthese betreiben chlorophyllfreie Prokaryoten. SIe kommt bei Bodenbakterien und Wasserbakterien vor. Dieser Prozess wurde von SERGEJ NIKOLAJEWITSCH WINOGRADSKIJ (1856-1953) bei den Schwefel oxidierenden Bakterien, Eisen oxidierenden Bakterien (1887, 1889) und den nitrifizierenden Bakterien (1890) entdeckt.
Bei der Chemolithoautotrophie werden durch die Oxidation von anorganischen Stoffen ATP als Energiequelle und das Reduktionsmittel NADH + H + als Voraussetzungen für die Herstellung von Kohlenhydraten im CALVIN-Zyklus bereitgestellt.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Chemosynthese betreiben chlorophyllfreie Prokaryoten (Eubakterien und einige Archaebakterien).

Die Chemosynthese als Form der autotrophen Assimilation stellt körpereigene, energiereiche, organische Stoffe aus körperfremden, energiearmen, anorganischen Stoffen her. Dazu wird als äußere Energiequelle nicht Lichtenergie wie bei der Fotosynthese verwendet, sondern die Energie stammt aus der Oxidation anorganischer Verbindungen.

Zentrale Reaktionsschritte der Chemosynthese

1. Phase (energieliefernde Phase)

  • Bei der Oxidation anorganischer Verbindungen entsteht Energie, die bei der Bildung von ATP aus ADP und P gespeichert wird.
  • Die bei der Oxidation frei werdenden Elektronen und Protonen werden für die Reduktion von NAD + zu NADH + H + verwendet.

2. Phase (CALVIN-Zyklus)
Kohlenstoffdioxid wird im CALVIN-Zyklus durch NADH + H + und ATP zu Kohlenhydraten reduziert (bei Eubakterien weitestgehend ähnlich, fehlt bei Archaebakterien).

  • Stickstoffkreislauf

Energieliefernde Reaktionen

Nitrifikation
Die bei der Nitrifikation stattfindenden Prozesse sind Bestandteil des Stickstoffkreislaufs und so neben der Zersetzung von organischen Stoffen vor allem für Pflanzen besonders wichtig.
Bei Fäulnisprozessen von organischem Material (Ammonifikation) entstehen Ammoniak bzw. in wässriger Lösung Ammonium-Ionen. Diese stellen den Ausgangsstoff für sogenannte nitrifizierende Bakterien dar, die mit den Fäulnisbakterien im Boden zusammenleben. Nitrifizierende Bakterien benötigen Sauerstoff und oxidieren Ammoniak bzw. Ammonium-Ionen über Nitrit-Ionen zu Nitrat-Ionen. Dabei arbeiten zwei Bakteriengruppen ökologisch eng zusammen: Arten der Nitrosogruppe (Nitritbakterien, z. B. Nitrosomonas) und der Nitrogruppe (Nitratbakterien, z. B. Nitrobacter).

Die enge Vergesellschaftung (Parabiose) zwischen beiden ist unbedingt notwendig, weil zum einen Nitrosomonas Nitrit als Substrat für Nitrobacter liefert. Da Nitrobacter „hungriger ist“, d. h. mehr Substrat im Vergleich zu Nitrosomonas benötigt, wird zum anderen das sonst giftige Nitrit durch Nitrobacter sofort entfernt. Beide Prozesse können durch folgende Gleichungen zusammengefasst werden:

Nitrosomonas:NH4 + + 2 O2 –→ NO2 - + 2 H2O
Nitrobacter:2 NO2 - + O2 –→ NO3 -

Die bei diesen Reaktionen entstehenden Nitrat-Ionen (NO 3 - ) im Boden stellen die Hauptstickstoffquelle für Pflanzen dar.

Schwefeloxidation

Dieser Prozess findet bei farblosen Schwefelbakterien statt, die vor allem in nährstoffreichen Tümpeln, Teichen oder Abwässern vorkommen. Bei der Fäulnis von Eiweißen entsteht Schwefelwasserstoff H2S, der weiter oxidiert wird.
Die Gattungen der Cyanobakterien Beggiatoa (Vorkommen in heißen Schwefelquellen und Sümpfen) und der Bakterien Thiotrix können den bei der Oxidation gebildeten elementaren Schwefel in der Zelle vorerst speichern:

2 S2- + 4 H+ + O2 –→ 2 S + 2 H2O.

Bei Bedarf wird der gespeicherte Schwefel zur Stufe des Sulfats oxidiert. So haben die Bakterien bei der natürlichen Reinigung von Industrieabwässern eine entscheidende Bedeutung:

2 S + 2 H 2 O + 3 O 2 → 4 H + + 2 SO 4 2- .

Thiobacillus denitrificans verwendet für die Oxidation der Schwefelverbindungen keinen Luftsauerstoff, sondern Nitrate als Oxidationsmittel. Bei dieser Reaktion entweicht molekularer Stickstoff in die Luft. Im Rahmen des Stickstoffkreislaufs spielt diese Denitrifikation eine entscheidende Rolle.

Eisen- und Manganbakterien

Eisenbakterien (z. B. Thiobacillus ferrooxidans), die u. a. in Wassergräben und sumpfigen Stellen vorkommen, oxidieren zweiwertiges Eisen zu dreiwertigem Eisen. Bei der Reaktion:

4 Fe 2+ + 4 H + + O 2 → 4 Fe 3+ + 2 H 2 O

wird nur wenig Energie frei, sodass ein hoher Stoffumsatz nötig ist. Dabei fällt Eisen(III)-hydrat in Form von Raseneisenstein aus. Bei den Manganbakterien laufen ähnliche Reaktionen ab, nur dass zweiwertiges Mangan zu vierwertigem Mangan umgesetzt wird.

Knallgasbakterien

Dazu gehören u. a. Arten der Gattung Pseudomonas, die nur fakultativ autotroph leben. Sie können neben der Chemosynthese auch organische Stoffe verwerten. Bei der Chemosynthese wird molekularer Wasserstoff oxidiert (Knallgasreaktion):

H 2 + 1 2 O 2 → H 2 O .

Elektronentransport und Phosphorylierung

Durch die oben beschriebenen Prozesse werden Elektronen abgegeben, deren Weitertransport über die Elektronentransportkette die Entstehung von ATP und NADH + H + als Voraussetzungen für den CALVIN-Zyklus antreiben.
Der Bau der Elektronentransportkette ist bei den verschiedenen Arten sehr unterschiedlich. Bei den meisten Vertretern (Ausnahme Archaebakterien) kommen jedoch Cytochrome vor. Bei der Übertragung der Elektronen über die Elektronentransportkette auf Sauerstoff entsteht ATP (Phosphorylierung, ähnlich der Atmungskette). Das Reduktionsmittel im CALVIN-Zyklus ist wie bei den fotoautotrophen Bakterien NADH + H+. Die Elektronen stammen auch hier aus den anorganischen Substraten. Bei einigen Arten (z. B. Thiomargarita) wird unter zusätzlichem Energieaufwand und durch Kopplung mit der Atmungskette, wo die Elektronen rückläufig transportiert werden, das Reduktionsmittel NADH + H + hergestellt. Arten, wie Nitritbakterien, die Substrate verwerten, die keine Protonen für die Bildung des Reduktionsmittels NADH + H + enthalten (z. B. NO2 -), übertragen Elektronen auf Protonen, die aus der Dissoziation des Wassers stammen (aber ohne oxidative Wasserspaltung).

Die Vorgänge der Chemolithotrophie können durch folgende allgemeine Reaktionsgleichung zusammengefasst werden:

6 CO 2 + 12 H 2 X → C 6 H 12 O 6 + 12 X + 6 H 2 O .

Organismen, die Chemolithotrophie betreiben, haben neben der Beteiligung im Kohlenstoff-, Stickstoff- und Schwefelkreislauf auch wirtschaftliche Bedeutung, so z. B.:
–

bei der natürlichen Abwasserreinigung (Schwefelbakterien),

– beim Abbau von giftigen Stoffen, wie H 2 S , NH 3 (Schwefel- und Nitritbakterien),
– bei der Anreicherung von Mineralstoffen im Boden, so z. B. NO 3 - (Nitratbakterien).

Vergleich von Fotosynthese und Chemosynthese

FotosyntheseChemosynthese
Gemeinsamkeiten
C-Quelle (CO 2 ) Aufbau von
Kohlenhydraten
im Calvin-Zyklus
Energiebereit-stellung in
Form von ATP
Reduktionsmittel NADPH + H + bzw. NADH + H +
Unterschiede
Vorkommengrüne- und Purpurbakterien, Algen, Moose, Farn- und Samenpflanzenchlorophyllfreie Bakterien (Eubakterien, einige Archaebakterien)
ReaktionsortChloroplastenCytoplasma
PigmenteChlorophylle, Carotinoide, Phycobiliproteidefehlen
H-Quelle H 2 O , bei Bakterien:
H 2 S oder organische Substanzen
H 2 S , NH 3 , H 2 O u .a .
EnergiequelleLichtenergieOxidation anorganischer Verbindungen
Lernhelfer (Duden Learnattack GmbH): "Chemosynthese (Chemolithoautotrophie) ." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/biologie-abitur/artikel/chemosynthese-chemolithoautotrophie (Abgerufen: 20. May 2025, 12:05 UTC)

Suche nach passenden Schlagwörtern

  • Nitrifikation
  • ATP
  • Eisenbakterien
  • Chemoautothrophie
  • Elektronentransportkette
  • Reaktionsgleichung
  • Schwefelbakterien
  • Chemosynthese
  • Calvin-Cyclus
  • Chemoautotrophie
  • Chemolithotrophie
  • nitrifizierende Bakterien
  • Calvin-Zyklus
  • Stickstoffkreislauf
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Obstbau in Neuseeland – Beispiel für Globalisierung

Die Globalisierung der Weltwirtschaft hat auch im Bereich der Agrarproduktion zu neuen Rahmenbedingungen geführt. In Neuseeland wurde im Zeitraum von nur zehn Jahren die Landwirtschaft liberalisiert und unmittelbar dem freien Wettbewerb auf dem Weltmarkt zugänglich gemacht. Während beispielsweise in der EU staatliche Subventionen an die Erzeuger gezahlt werden, kommt die Landwirtschaft in Neuseeland seit 1984 völlig ohne staatlichen Einfluss und finanzielle Zuwendungen aus.
Am Beispiel des Obstbaues wird aufgezeigt, wie es den Landwirten gelungen ist, unter globalen Konkurrenzbedingungen ihre Existenz zu sichern. Unter anderem konzentrierten sich die Farmer Neuseelands auf den Anbau von Spezialkulturen, vor allem auf die Kiwifrucht. Besonders in den Industrieländern war die Nachfrage nach dieser gesunden exotischen Frucht sprunghaft angestiegen. Außerdem haben die neuseeländischen Landwirte rasch auf veränderte Nachfragebedingungen und den gestiegenen Bedarf nach ökologisch wertvollen Produkten reagiert. Inzwischen werden etwa 85 % der Agrarerzeugnisse des Landes in viele Länder der Welt exportiert. Damit hat sich die Landwirtschaft zu einem bedeutenden Wirtschaftsfaktor Neuseelands entwickelt.

Chemosynthese

Chemosynthese (auch Chemolithotrophie oder Chemoautotrophie) ist eine Form des chemotrophen Energiestoffwechsels (Chemotrophie), bei dem anorganische Verbindungen oder Ionen die Reduktionsäquivalente für den Energiegewinn liefern. Chemosynthese betreiben chlorophyllfreie Prokaryoten. Sie kommt bei Bodenbakterien und Wasserbakterien vor. Dieser Prozess wurde von SERGEJ NIKOLAJEWITSCH WINOGRADSKIJ (1856-1953) bei den schwefeloxidierenden Bakterien, eisenoxidierenden Bakterien (1887, 1889) und den nitrifizierenden Bakterien (1890) entdeckt.
Bei der Chemolithotrophie werden durch die Oxidation von anorganischen Stoffen ATP als Energiequelle und das Reduktionsmittel NADH + H + als Voraussetzungen für die Herstellung von Kohlenhydraten im CALVIN-Zyklus bereitgestellt. Bei der ersten Phase werden u.a. durch Nitrifikation oder Schwefeloxidation die Voraussetzungen für den CALVIN-Zyklus gebildet. Besondere Bedeutung haben u.a. nitrifizierende Bakterien im Rahmen des Stickstoffkreislaufs oder Schwefelbakterien für die Reinigung der Abwässer.

Hans Fischer

* 27.07.1881 in Höchst (heute zu Frankfurt/ Main gehörend)
† 31.03.1945 in München

HANS FISCHER war ein deutscher Chemiker. Er untersuchte Farbstoffe auf Pyrrol-Basis, z. B. Porphyrine. Es gelang ihm, den Gallenfarbstoff Bilirubin zu synthetisieren, er klärte die Struktur des Hämins, eines Bestandteils des roten Blutfarbstoffes, auf und die Struktur von Chlorophyll.
1930 erhielt HANS FISCHER den Nobelpreis für Chemie.

Fotophosphorylierung

Fotophosphorylierung beschreibt die Bildung von Adenosintriphosphat (ATP) durch die Anlagerung einer Phosphatgruppe an Adenosindiphosphat (ADP) unter dem Einfluss von Lichtenergie. Der ablaufende Mechanismus der ATP-Bildung im Chloroplast und die ATP-Bildung im Mitochondrium während der Endoxidation bei der Zellatmung sind grundlegend gleich und werden als Chemiosmose bezeichnet. Es entsteht im Laufe der Lichtreaktionen ein Konzentrationsunterschied an Protonen zwischen Thylakoidinnenraum und Stroma, in dessen Endergebnis durch den angestrebten Konzentrationsausgleich enzymatisch ATP gebildet wird. Je nach Weg der Elektronen bei den lichtabhängigen Reaktionen unterscheidet man zwischen nichtzyklischer und zyklischer Fotophosphorylierung.

Fotosynthesepigmente

Fotosynthesepigmente sind Pigmente, die Licht absorbieren und mithilfe der Lichtenergie von einem energiearmen Grundzustand in einen energiereichen, angeregten Zustand übergehen. Beim Zurücksprung in den Grundzustand - der angeregte Zustand ist zwar energievoll aber instabil - wird die Energie in Form von Photonen an ein bestimmtes Chlorophyll-a-Molekül, ebenfalls ein Fotosynthesepigment, abgegeben, dass sich in einem Reaktionszentrum befindet. Mithilfe dieser Energie findet dann die erste lichtbetriebene, chemische Reaktion statt, eine Redoxreaktion.Diejenigen Pigmente, die das Licht absorbieren und dessen Energie bis zu den Pigmenten im Reaktionszentrum weiterleiten, heißen Antennenpigmente. Antennenpigmente sind verschiedene Chlorophyll-Protein-Komplexe, Carotinoide und Phycobiline. Jedes fotosynthetische Reaktionszentrumschlorophyll ist von etwa 300 verschiedenen, lichtsammelnden Antennenpigmenten umgeben.
Die gesamte Struktur, Antennenpigmente und Reaktionszentrum, wird Fotosystem genannt.

Der deutsche Botaniker THEODOR WILHELM ENGELMANN (1843 – 1909) konnte 1883 mit seinen Versuchen mit einer fadenförmigen Alge die Fotosyntheseaktivität in den verschiedenen Bereichen des sichtbaren Lichtes nachweisen. Diese entspricht im Wesentlichen den Absorptionsmaxima der Fotosynthesepigmente bzw. dem Zusammenwirken der Farbstoffe im Fotosystem. Chlorophylle stellen die Hauptpigmente in allen fotoautotrophen Organismen dar. Carotinoide und Chlorophylle sind vorwiegend als Antennenpigmente zur optimalen Lichtabsorption im Rahmen des Antennenkomplexes im Fotosystem vertreten.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025