Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Biologie Abitur
  3. 3 Stoffwechsel und Energieumsatz
  4. 3.3 Abbauender Stoffwechsel
  5. 3.3.1 Die Zellatmung setzt Energie frei
  6. Struktur der Mitochondrien

Struktur der Mitochondrien

Mitochondrien sind Zellorganellen, in denen Teile der Zellatmung als Citratzyklus und Atmungskette ablaufen. Hier entsteht der größte Teil der aus der Atmung gewonnenen Energie. Mitochondrien werden deshalb auch als die Kraftwerke der Zellen bezeichnet. Alle Mitochondrien zeigen im Prinzip den gleichen Grundaufbau. Ihre Dimensionen entsprechen in etwa denen von Prokaryoten (Durchmesser zwischen 0,5 und 0,8 µm).

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Mitochondrien wurden erst Mitte des 19. Jh. von FLEMMING und KÖLLITZER entdeckt. 1897 führte BENDADEN den Begriff (griech.: mitos = Faden, chronos = Körnchen) ein. Anfang der 1950er Jahre klärten vor allem A. CLAUDE und G.E. PALADE mit Hilfe des Elektronenmikroskops die Feinstruktur der Mitochondrien auf.

Mitochondrien findet man in fast allen Eukaryotenzellen. In manchen ist ein einzelnes großes Mitochondrium enthalten, jedoch treten je nach Stoffwechselaktivität oft Hunderte oder Tausende in einer Zelle auf. Sie bewegen sich im Cytoplasma der Zelle und verändern dabei ihre Form. Die Vermehrung erfolgt durch Zweiteilung.

Die Anzahl der in der Zelle vorhandenen Mitochondrien wird durch die Stoffwechselaktivität der Zelle bestimmt. Eine menschliche Leberzelle besteht zu etwa 13 % aus Mitochondrien, eine Herzmuskelzelle sogar bis zu 50 %. Mikroskopisch sind die Mitochondrien in diesen Zellen als kleine Körnchen sichtbar. Manche Eizellen besitzen 100 000 Mitochondrien, der parasitisch lebende Einzeller Trypanosoma lediglich nur ein einziges großes Organell. Mitochondrienfreie Einzeller sind die Polymastiginen, sie leben fast alle als Symbionten im Darm von Termiten oder Schaben.

  • Mitochondrien

Alle Mitochondrien zeigen im Prinzip den gleichen Grundaufbau. Sie sind von einer äußeren glatten Membran (Dicke 7 nm) umgeben. Eine zweite, innere Membran dringt durch vielfältige Einstülpungen tief in den Innenraum ein. Man unterscheidet aufgrund der Form dieser Membran-Einstülpungen drei verschiedene Typen: den Cristae -Typ, den Sacculi-Typ und den Tubuli-Typ. Die mehrfachen Faltungen der Membran führen zu einer enormen Oberflächenvergrößerung und somit zu einer erhöhten Zellatmung, da hier die Enzyme der Atmungskette lokalisiert sind. Zellen mit hoher physiologischer Aktivität wie Herzmuskelzellen oder Flugmuskelzellen der Insekten haben aus diesem Grund Mitochondrien mit einer besonders dicht gepackten, inneren Membran.

Durch die beiden Hüllmembranen entstehen innerhalb des Mitochondriums zwei Kompartimente. Den Raum innerhalb der inneren Membran nennt man Matrix, den Raum zwischen den Membranen Intermembranraum oder perimitochondrialer Raum. Nur in der Matrix ist mitochondriales Plasma enthalten - es gibt dem Mitochondrium seine Form. Die Matrix enthält Ribosomen, die mitochondriale DNA und zahlreiche Enzyme des Kohlenhydrat- und Eiweißstoffwechsels. Hier findet eine Reihe von Reaktionsschritten der Zellatmung statt. Beide Membranen sind Doppellipidschichten mit eingelagerten Proteinen.

Während die äußere Membran relativ durchlässig ist, gelangen Stoffe durch die innere Membran nur mit Transportproteinen. In die innere Membran sind die Enzyme der Atmungskette (Enzymkomplexe I - IV, Cytochrom C und Ubichinone) eingebettet. Außerdem sitzen auf der inneren Membran die F1-Partikel, d.h. die ATP-Synthasen, an denen die ATP-Synthese stattfindet.

Mitochondrien besitzen eine eigene DNA und Ribosomen, so dass einige Enzyme des Citratzyklus und der Atmungskette in ihnen hergestellt werden können (ca. 1%). Für ein autonomes Eigenleben reicht die Codierungskapazität des ringförmigen Genoms jedoch nicht aus. Die Ribosomen der Mitochondrien sind die kleineren 70-S-Ribosomen, wie sie auch in Plastiden und Procyten vorkommen. Dies begründet die Annahme der Endosymbiontentheorie. Die Ähnlichkeit im Aufbau zwischen Procyten und den eucytischen, genetisch semiautonomen Mitochondrien und Plastiden veranlasste einige Wissenschaftler zu der Annahme, das die Mitochondrien und Plastiden aus prokaryotischen Einzellern entstanden sind. Diese sollen als Endosymbionten in einer sehr frühen Evolutionsstufe in eine Zelle eingewandert sein (daher die heutige doppelte Membran dieser Organelle), die noch kaum Organelle besaß, jedoch schon eukaryotische Organisationseigenschaften aufwies.

  • Typen der inneren Mitochondrienmembran
Lernhelfer (Duden Learnattack GmbH): "Struktur der Mitochondrien." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/biologie-abitur/artikel/struktur-der-mitochondrien (Abgerufen: 20. May 2025, 19:04 UTC)

Suche nach passenden Schlagwörtern

  • Zellatmung
  • Cristae
  • Mitochondrien
  • Matrix
  • Ribosomen
  • Citratzyklus
  • Atmungskette
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Der Einfluss freier Radikale auf das Altern

Mit der Entstehung der Vielzelligkeit und der damit verbundenen Differenzierung von Zellen in Keimbahn- und Körperzellen ist für die Körperzellen ein Alterungsprozess verbunden, der zum Tod der Zellen und des vielzelligen Organismus führt. Keimzellen (Ei- und Spermazellen) sind potenziell unsterblich, d.h. sie können sich unbegrenzt weiter teilen. Bei ungünstigen Umwelteinflüssen zeigen aber auch diese Zellen Alterungserscheinungen, welche jedoch bei günstigen Bedingungen wieder beseitigt werden können.
Man hat herausgefunden, dass während des Elektronentransportes in der Atmungskette Peroxidionen ( O 2 − ) entstehen können, die über Wasserstoffperoxid aggressive freie Radikale bilden. Diese Radikale zerstören Proteine, Lipide und DNA. Mit dem Altern nimmt ihre Zahl zu und führt zur Einschränkung der ATP-Produktion. Gegenwärtig läuft die Forschung auf Hochtouren, um Schutzenzyme zu finden, die die freien Radikale ohne negative Folgen abfangen können.

Enzymregulation

Enzyme dürfen im Organismus nicht permanent wirksam sein, weil ansonsten alle biochemischen Reaktionen gleichzeitig mit relativ hoher Geschwindigkeit ablaufen würden. Zum einen hängt die Enzymaktivität von der Temperatur, dem pH-Wert und der Konzentration des Substrats ab.
Außerdem wird die Aktivität von Enzymen nach verschiedenen Mechanismen reguliert. Durch Inhibitoren können Enzyme reversibel oder irreversibel gehemmt werden. Die reversible Enzymhemmung kann nach einem kompetitiven oder einem nicht kompetitiven Mechanismus erfolgen. Ein Sonderfall der nicht kompetitiven Hemmung ist die allosterische Regulation.

Atmungskette

Die Atmungskette ist der letzte Schritt des in den Mitochondrien stattfindenden Glukoseabbaus und schließt sich an die Glykolyse und den Citratzyklus an. Die während des Citratzyklus entstandenen Coenzyme NADH 2+ und FADH 2 übertragen ihren Wasserstoff an Sauerstoff und bilden somit Wasser – eine Knallgasreaktion mitten in der Zelle - würde diese Reaktion nicht auf viele harmlose Schritte aufgespalten ablaufen – die Atmungskette. Als Endprodukt entsteht ATP, welches dem Organismus als Energie zur Verfügung steht.
Die Enzyme der Atmungskette sind bei Prokaryoten in der Cytoplasmamembran, bei Eukaryoten in der inneren Mitochondrienmembran lokalisiert. Sie bilden eine Reihe/Kette von Redoxsystemen, durch die Elektronen stufenweise in Richtung positiveres Potenzial transportiert werden. Integrale Membranproteine pumpen an drei Stellen der Reaktionskette Protonen durch die Membran, da diese nicht ohne Weiteres die Biomembranen passieren können. Es gibt drei verschiedene Transportarten für Elektronen in der Atmungskette: die ausschließliche Elektronenübertragung ( Fe 3+ zu Fe 2+ ), die Übertragung eines Wasserstoffatoms ( H +   +   e - ) oder die Übertragung eines Hydridions ( H - ).

Chemosynthese

Chemosynthese (auch Chemolithotrophie oder Chemoautotrophie) ist eine Form des chemotrophen Energiestoffwechsels (Chemotrophie), bei dem anorganische Verbindungen oder Ionen die Reduktionsäquivalente für den Energiegewinn liefern. Chemosynthese betreiben chlorophyllfreie Prokaryoten. Sie kommt bei Bodenbakterien und Wasserbakterien vor. Dieser Prozess wurde von SERGEJ NIKOLAJEWITSCH WINOGRADSKIJ (1856-1953) bei den schwefeloxidierenden Bakterien, eisenoxidierenden Bakterien (1887, 1889) und den nitrifizierenden Bakterien (1890) entdeckt.
Bei der Chemolithotrophie werden durch die Oxidation von anorganischen Stoffen ATP als Energiequelle und das Reduktionsmittel NADH + H + als Voraussetzungen für die Herstellung von Kohlenhydraten im CALVIN-Zyklus bereitgestellt. Bei der ersten Phase werden u.a. durch Nitrifikation oder Schwefeloxidation die Voraussetzungen für den CALVIN-Zyklus gebildet. Besondere Bedeutung haben u.a. nitrifizierende Bakterien im Rahmen des Stickstoffkreislaufs oder Schwefelbakterien für die Reinigung der Abwässer.

Glykolyse

Glykolyse wurde von den griechischen Wörtern glycos = süß und lysis = Auflösung abgeleitet. Damit ist die Zuckerspaltung gemeint. Sie findet im Cytoplasma der Zellen statt. Bei der aeroben Glykolyse (Sauerstoffanwesenheit) wird ein Glucosemolekül mit 6 C-Atomen unter Energiegewinn in Form von ATP in zwei Pyruvat-Ionen mit 3 C-Atomen gespalten. Pyruvate sind die Anionen der Brenztraubensäure, welche im Citronensäurezyklus weiter verwertet werden. Unter anaeroben Bedingungen (Sauerstoffabwesenheit) ist das Endprodukt der Glykolyse Lactat (Milchsäure) oder Ethanol. Dieser Weg der anaeroben Verwertung von Glucose ist der älteste biochemische Mechanismus zur Energiegewinnung, welcher auch die Entwicklung von lebenden Organismen in sauerstofffreier Atmosphäre ermöglichte.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025