Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Chemie
  3. 3 Chemische Reaktion
  4. 3.1 Grundlagen chemischer Reaktionen
  5. 3.1.1 Merkmale chemischer Reaktionen
  6. Energieumwandlung

Energieumwandlung

Bei physikalischen, technischen, chemischen oder biologischen Vorgängen kann Energie von einer Energieform in andere Energieformen umgewandelt werden.

Energieumwandlungen sind häufig auch mit Energieübertragung und Energieentwertung verbunden.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Energie, die ein Körper besitzt, kann in andere Energieformen umgewandelt werden. So wird z. B. beim Verbrennen von Holz die im Holz gespeicherte chemische Energie in thermische Energie und Lichtenergie umgewandelt. Bei einem Wasserkraftwerk wird die potenzielle Energie des angestauten Wassers in elektrische Energie umgewandelt. Bei einem Elektroherd wird elektrische Energie in thermische Energie umgewandelt. Bei Pflanzen wird die Lichtenergie in chemische Energie umgewandelt. Allgemein gilt:

Bei physikalischen, technischen, chemischen oder biologischen Vorgängen kann Energie von einer Energieform in andere Energieformen umgewandelt werden.

Energieumwandlungen sind häufig auch mit Energieübertragung und Energieentwertung verbunden.

Elektrische Energie und andere Energieformen
Elektrische Energie hat für uns eine besondere Bedeutung.
Diese Energieform

  • ist für den Betrieb vieler Geräte und Anlagen unerlässlich,
  • lässt sich aus vielen anderen Energieformen gewinnen,
  • lässt sich gut in andere Energieformen umwandeln,
  • kann in großen Mengen über weite Strecken transportiert werden.

Bild 2 zeigt an Beispielen, aus welchen Energieformen elektrische Energie gewonnen und in welche Formen sie umgewandelt werden kann. Die im Bild genannten technischen Geräte, in denen Energieumwandlungen vor sich gehen, kann man auch als Energiewandler bezeichnen. Fast alle technischen Geräte und Anordnungen, die wir nutzen, sind solche Energiewandler.

Es gelingt dabei aber nicht vollständig, eine Energieform in eine gewünschte andere umzuwandeln. So haben z. B. Elektromotoren einen Wirkungsgrad bis zu 98 %, d. h. 98 % der elektrischen Energie werden in mechanische Energie umgewandelt. Der Rest von 2 % fällt in Form von Wärmeenergie (u. a. Reibung) an und kann nicht genutzt werden. Dieser Rest geht praktisch „verloren“. Selbst ein Schaltgetriebe in einem Pkw erreicht „nur“ einen Wirkungsgrad von etwa 99 %.

Verbrennungsmotoren haben aber wesentlich schlechtere Wirkungsgrade. So erreichen derzeit Dieselmotoren mit Direkteinspritzungen nur Wirkungsgrade von max. 45 % und Benzinmotoren mit Einspritztechnik sogar nur max. 37 %. Der Rest der Energie geht in Form nicht nutzbarer Wärmeenergie verloren. Ähnlich ist die Situation bei der Elekroenergie-Erzeugung. Der Wirkungsgrad eines Großkraftwerks auf Kohlebasis neuester Technologie beträgt 45 %, in älteren sind es 35 %. Die anfallende restliche Wärmeenergie kann oft nur schlecht genutzt werden, da potenzielle Verbraucher nicht in der Nähe sind.
Wesentlich günstiger ist hingegen die Situation bei einem kleinen Block-Heizkraftwerk im Keller eines Hauses. Bei diesem wird zwar nur ein geringer Output an Elekroenergie angestrebt, aber die Abwärme wird im Haus mit genutzt. Dadurch kann ein Wirkungsgrad von 90 bis 95 % erreicht werden.

  • elektrische Energie und andere Energieformen
Lernhelfer (Duden Learnattack GmbH): "Energieumwandlung." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/chemie/artikel/energieumwandlung (Abgerufen: 20. May 2025, 19:58 UTC)

Suche nach passenden Schlagwörtern

  • Energieübertragung
  • Energiewandler
  • Energie
  • Energieumwandlung
  • Energieentwertung
  • andere Energieformen
  • elektrische Energie
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Heinrich Friedrich Emil Lenz

* 12.02.1804 in Dorpat
† 10.02.1865 in Rom

Er war ein russischer Physiker deutscher Herkunft, der in St. Petersburg als Physikprofessor tätig war und sich insbesondere mit Problemen der Elektrizitätslehre beschäftigte. Er entdeckte das nach ihm benannte lenzsche Gesetz über die Richtung des Induktionsstromes.

Innere Energie

Die innere Energie gibt an, wie groß die in einem abgeschlossenen System (Körper) gespeicherte Energie ist.
Formelzeichen: U
Einheit: ein Joule (1 J)
Sie ist die Gesamtenergie aller Teilchen (Atome, Moleküle) eines Körpers und setzt sich damit aus der Summe der Bewegungsenergien bei Translation, Rotation und Schwingungen, der potenziellen Energien und der Bindungsenergien zusammen.
Bei Gasen wird die innere Energie im Wesentlichen von den Bewegungsenergien der Teilchen bestimmt.

Erster Hauptsatz der Thermodynamik

Der 1. Hauptsatz der Thermodynamik ist der Energieerhaltungssatz, formuliert für thermodynamische Prozesse. Die heute bekannte mathematische Formulierung des 1. Hauptsatzes der Thermodynamik stammt von RUDOLF CLAUSIUS und wurde von ihm um 1850 so formuliert:

Die einem thermodynamischen System zugeführte Wärme ist gleich der Summe aus der Änderung der inneren Energie des Systems und der von ihm verrichteten mechanischen Arbeit.

Δ U = W + Q Δ U Änderung der inneren Energie des Systems W vom System oder am System verrrichtet mechanische Arbeit (Volumenarbeit) Q vom System aufgenommene oder abgegebene Wärme

Eine andere übliche Formulierung des 1. Hauptsatzes der Thermodynamik lautet:
Es ist unmöglich, eine Perpetuum mobile 1. Art zu konstruieren.

Grundgleichung der Wärmelehre

Unter der Bedingung, dass keine Änderung des Aggregatzustandes erfolgt, gilt für die einem Körper zugeführte oder von ihm abgegebene Wärme:

Q = c ⋅ m ⋅ Δ ϑ oder Q = c ⋅ m ⋅ Δ T c spezifische Wärmekapazität m Masse des Körpers Δ ϑ ,   Δ T Temperaturänderung des Körpers

Die Stoffkonstante spezifische Wärmekapazität, insbesondere die von Wasser, hat erhebliche Bedeutung für Natur und Technik, da in Wasser eine erhebliche Wärme gespeichert und mit ihm transportiert werden kann.

Wärmeleitung

Die Wärmeleitung ist eine Art der Wärmeübertragung, bei der Wärme durch Körper hindurch von Bereichen höherer Temperatur zu Bereichen niedrigerer Temperatur übertragen wird. Die Wärmeleitfähigkeit von Stoffen ist unterschiedlich. Es gibt gute und schlechte Wärmeleiter.
Die Wärmeleitung kann in einem Stoff erfolgen. Sie kann aber auch von einem Stoff in einen anderen (Wärmeübergang) oder durch einen Stoff hindurch (Wärmedurchgang) vor sich gehen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025