Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Chemie
  3. 3 Chemische Reaktion
  4. 3.1 Grundlagen chemischer Reaktionen
  5. 3.1.4 Chemisches Gleichgewicht
  6. Massenwirkungsgesetz

Massenwirkungsgesetz

Bei reversiblen chemischen Reaktionssystemen stellt sich ein Gleichgewicht zwischen Hin- und Rückreaktion ein. Solche Reaktionen verlaufen nicht vollständig, d. h. die Konzentration der Ausgangsstoffe sinkt nicht auf null. In Abhängigkeit von den Reaktionsbedingungen (Druck, Temperatur) werden konstante Gleichgewichtskonzentrationen der an der Reaktion beteiligten Stoffe erreicht. Mit Hilfe des Massenwirkungsgesetzes können diese in Form der Gleichgewichtskonstanten berechnet werden.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Chemische Reaktionen laufen nie vollständig ab, sondern sie erreichen einen Gleichgewichtszustand . Dieser Zustand ist dadurch gekennzeichnet, dass in einer bestimmten Zeiteinheit ebenso viele Produktmoleküle zu den Ausgangsstoffen reagieren, wie Produktmoleküle aus den Ausgangsstoffen gebildet werden. Folglich ändert sich die Konzentrationen der an der Reaktion beteiligten Stoffe nicht mehr, d. h. die Konzentrationen bleiben konstant.
Es dauert jedoch eine gewisse, von Reaktion zu Reaktion unterschiedliche Zeit, bis sich diese Gleichgewichtskonzentrationen eingestellt haben. Die Zeitspanne bis zum Erreichen der konstanten Konzentrationen nennt man Einstellzeit des chemischen Gleichgewichts.

Betrachtet man das Reaktionsgemisch als Ganzes, so erfolgen keine Veränderungen mehr, während bei einer Betrachtung einzelner Moleküle Veränderungen zu beobachten sind. Die Anzahl der in der Hin- und Rückreaktion umgesetzten Moleküle ist jedoch identisch, d. h. die Geschwindigkeit von Hin- und Rückreaktion sind gleich. Einen solchen Zustand bezeichnet man als dynamisch.

Das chemische Gleichgewicht stellt sich bei umkehrbaren (reversiblen) Reaktionen ein und wird in der Reaktionsgleichung durch einen Gleichgewichtspfeil ⇄ charakterisiert.

      A       +       B       ⇄       A B

Mathematisch läßt sich das chemische Gleichgewicht durch das Massenwirkungsgesetz beschreiben, das 1867 vom norwegischen Technologen und Mathematiker CATO MAXIMILIAN GULDBERG (1836-1902) und dem norwegischen Chemiker PETER WAAGE (1833-1900) hergeleitet wurde.

Definition

Bei gegebener Temperatur und Druck ist der Quotient aus dem Produkt der Konzentrationen der Reaktionsprodukte und dem Produkt der Konzentrationen der Ausgangsstoffe eine Konstante die Gleichgewichtskonstante K.

K = Produkt der Konzentrationen der Reaktionsprodukte     Pr o d u k t   d e r   K o n z e n t r a t i o n e n   d e r   A u s g a n g s s t o f f e  

Für die oben genannte allgemeine Beispielreaktion lautet des Massenwirkungsgesetz:

K = c(AB)     c ( A )   ·     c ( B )  

Das Gleichgewicht der reversiblen Reaktion liegt auf der Seite des Reaktionsprodukts (AB), wenn die Gleichgewichtskonstante K >>1 ist.
Ist die Gleichgewichtskonstante K <<1, liegt das Gleichgewicht auf Seiten der Ausgangsstoffe (A und B)
Das Massenwirkungsgesetz bezieht sich immer auf eine konkrete Reaktionsgleichung. Vereinbarungsgemäß stehen auf der linken Seite -vor dem Reaktionspfeil- die Ausgangsstoffe (Edukte) und auf der rechten Seite - nach dem Reaktionspfeil- der Reaktionsgleichung die Endstoffe (Produkte).

Beispiel
Ein Beispiel für eine reversible Reaktion, bei der sich ein chemisches Gleichgewicht einstellt, ist die Veresterung eines Alkohols mit einer Säure, z. B. die Reaktion zwischen Ethanol und Essigsäure.

Bild

Die chemischen Reaktionen zur Esterbildung und Esterspaltung laufen gleichzeitig ab. Es stellt sich ein chemisches Gleichgewicht ein.
Werden Ethanol und Essigsäure in einem geschlossenen Gefäß im Stoffmengenverhältnis 1 mol : 1 mol gemischt (mit Schwefelsäure als Katalysator versetzt) reagieren nur 0,67 mol der Ausgangsstoffe zu Ester und Wasser. 0,33 mol der Ausgangsstoffe bleiben unverändert.
Im Gleichgewicht liegen dann 0,67 mol Ester, 0,67 mol Wasser, 0,33 mol Alkohol und 0,33 mol Säure vor. Das gleiche Ergebnis wird erhalten, wenn man 1 mol Ester mit 1 mol Wasser umsetzt.
Setzt man die Gleichgewichtskonzentrationen in das MWG ein, so ergibt sich eine Gleichgewichtskonstante von K = 4. Diese ist bei gegebenem Druck und Temperatur unveränderlich.

Die Abhängigkeit chemischer Gleichgewichte von den äußeren Bedingungen beschreibt das vom französichen Chemiker HENRY LOUIS LE CHATELIER formulierte Prinzip vom kleinsten Zwang . Danach versucht ein chemisches System einem äußeren durch die Änderung von Druck oder Temperatur verursachten Zwang auszuweichen. Dadurch ändert sich das Verhältnis der Konzentrationen der Ausgangsstoffe und Reaktionsprodukte und somit die Gleichgewichtskonstante K.

Katalysatoren haben keinen Einfluß auf die Gleichgewichtslage und damit auch nicht auf den Wert der Gleichgewichtskonstante. Die Formel des Massenwirkungsgesetztes bleibt unverändert. Katalysatoren bewirken nur eine Veränderung der Reaktionsgeschwindigkeit der Hin- und Rückreaktion, d. h. sie verringern die Einstellzeit des chemischen Gleichgewichts.

Lernhelfer (Duden Learnattack GmbH): "Massenwirkungsgesetz." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/chemie/artikel/massenwirkungsgesetz (Abgerufen: 20. May 2025, 14:07 UTC)

Suche nach passenden Schlagwörtern

  • Cato Maximilian Guldberg
  • Gleichgewichtszustand
  • MWG
  • Gleichgewichtskonstante
  • Rechenbeispiel
  • PETER WAAGE
  • Ausbeute der chemischen Reaktion
  • Katalysatoren
  • Berechnungsbeispiel
  • chemisches Gleichgewicht
  • Massenwirkungsgesetz
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Giulio Natta

* 26.02.1903 in Imperia (Italien)
† 02.05.1979 in Bergamo (Italien)

Giulio Natta war ein italienischer Chemiker. Er synthetisierte viele organische Verbindungen, z. B. Methanol und Methanal oder Synthesekautschuk. Gemeinsam mit K. W. Ziegler erforschte er die Wirkung bestimmter (stereospezifischer) Katalysatoren, die nach den Wissenschaftlern als „Ziegler-Natta-Katalysatoren“ benannt wurden. 1963 erhielt er gemeinsam mit Ziegler dafür den Nobelpreis für Chemie.

Karl Waldemar Ziegler

* 26.11.1898 in Helsa (Hessen)
† 11.08.1973 in Mülheim a. d. Ruhr

Karl Waldemar Ziegler war ein deutscher Chemiker. Er erforschte freie organische Radikale, Fettalkohole und metallorganische Verbindungen, z. B. Tetraethylblei. Die von ihm entdeckten metallorganischen Mischkatalysatoren auf Titanbasis wurden und werden zur industriellen Herstellung von Plasten, z. B. Polyethylen (PE) und Polypropylen (PP) verwendet. Für seine Erkenntnisse zur Chemie der Polymere erhielt Ziegler 1963 gemeinsam mit Giulio Natta den Nobelpreis für Chemie.

Großtechnische Herstellung von Schwefelsäure

Abgasreinigung, Doppelkatalyse, Gegenstromprinzip, Gleichgewichtsreaktion, Kontaktverfahren, Oleum, sauren Regens, Schwefelsäure, Schwefeltrioxid
Schwefelsäure ist mit einer Menge von etwa 150 Millionen Tonnen pro Jahr die am meisten produzierte Chemikalie der Welt. Die Herstellung von Schwefelsäure im sogenannten Kontaktverfahren erfolgt im kontinuierlichen Prozess und umfasst drei Teilschritte: Zuerst wird z. B. durch Verbrennung von Schwefel mit Luft Schwefeldioxid gewonnen, das dann katalytisch zu Schwefeltrioxid oxidiert wird. Letzteres wird schließlich mit Wasser zu Schwefelsäure umgesetzt.

Fette – Aufbau und Eigenschaften

Fett ist nicht gleich Fett. Das stellt jeder sofort fest, der sich über gesunde Ernährung informiert. Diese Tatsache hängt mit dem Bau der Fette zusammen. Fette sind die Ester langkettiger Carbonsäuren. Diese Carbonsäuren sind mit Glycerol (Propan-1,2,3-triol, Glycerin), einem mehrwertigen Alkohol, verestert. Jede der drei Hydroxylgruppen des Glycerols kann mit einer anderen Carbonsäure reagieren, sodass ganz unterschiedliche Fette entstehen und existieren.

Victor François Auguste Grignard

* 06.05.1871 in Cherbourg
† 13.12.1935 in Lyon

Victor François Auguste Grignard war ein französischer Chemiker. Er untersuchte Halogenalkane und –arene und beschäftigte sich mit metallorganischen Verbindungen, insbesondere mit organischen Magnesiumverbindungen, die nach ihm als „Grignard-Verbindungen“ benannt sind.
1912 erhielt er gemeinsam mit Paul Sabatier den Nobelpreis für Chemie.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025