Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik Abitur
  3. 8 Differenzen- und Differenzialgleichungen
  4. 8.2 Differenzialgleichungen
  5. 8.2.2 Lösungsverhalten von Differenzialgleichungen
  6. Differenzialgleichungen zur Beschreibung des Lade- und Entladevorgangs eines Kondensators

Differenzialgleichungen zur Beschreibung des Lade- und Entladevorgangs eines Kondensators

In einem Gleichstromkreis befindet sich eine Spannungsquelle mit der Spannung U 0 ein ohmscher Widerstand R und ein Kondensator mit der Kapazität C.
Wird Spannung angelegt, so fließt über den Widerstand R ein Strom I zum Kondensator und lädt ihn auf. Dabei wächst die Kondensatorspannung U C = Q C .

Beim Stromfluss fällt am Widerstand die Spannung U R = I ⋅ R ab. Die Summe aus Spannungsabfall am ohmschen Widerstand und Kondensatorspannung ist immer gleich der Spannung der Spannungsquelle.

Es gilt also U 0 = U R + U C = I R + Q C , woraus mit I = d Q d   t folgt:
U 0 = R d Q d   t + Q C   b z w .   d Q d   t + Q R C = U 0 R

Diese Gleichung ist eine lineare inhomogene Differenzialgleichung 1. Ordnung der Form f ′ ( x ) + q   f ( x ) = s mit den Koeffizienten q = 1 R C   u n d   s = U 0 R sowie der gesuchten Funktion Q = Q ( t ) , die im Folgenden zu lösen ist.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.
  • Gleichstromkreis mit Spannungsquelle, Kondensator und ohmschen Widerstand

Aus der allgemeinen Lösung
y = f ( x ) = { c + s x , w e n n       q = 0 c ⋅ e −     q   x + s q , w e n n       q ≠ 0     m i t       c     k o n s tan t
erhält man als Lösung der Gleichung:
Q ( t ) = c ⋅ e − t R C + U 0 C

Nun werden die Anfangswertprobleme für den Lade- und Entladevorgang des Kondensators gelöst. Beim Laden liefert die Spannungsquelle die Spannung U 0 ; zu Beginn des Ladevorgangs befindet sich noch keine Ladung auf dem Kondensator. Beim Entladen liegt keine äußere Spannung an, der Kondensator verfügt bei t = 0 über eine Spannung U C 0 = U C ( 0 ) und trägt demzufolge die Ladung Q 0 = U C 0 ⋅ C .

 LadevorgangEntladevorgang
Bedingungen U 0 ≠ 0,   Q ( 0 ) = 0 U 0 = 0,   Q ( 0 ) = Q 0 = U C 0 ⋅ C
Gleichung lösen Q ( t ) = c ⋅ e − 1 R C + U 0 C Q ( 0 ) = 0 = c + U 0 C c = − U 0 C Q ( t ) = c ⋅ e − 1 R C Q ( 0 ) = U C 0 C = c c = U C 0 ⋅ C
partikuläre
Lösung für Q
Q ( t ) = − U 0 C ⋅ e − 1 R C + U 0 C Q ( t ) = U 0 C ( 1 − e − 1 R C ) Q ( t ) = U C 0 ⋅ C ⋅ e − 1 R C
Spannung am
Kondensator
U C = Q C
U C ( t ) = U 0 ( 1 − e − 1 R C ) U C ( t ) = U C 0 ⋅ e − 1 R C
Spannung am
Kondensator mit Bild
U C ( t ) = 40 V ( 1 − e − 10 s   − 1   ⋅   t ) U C ( t ) = 40 V ⋅ e − 10 s   − 1   ⋅   t

Wir betrachten nun den folgenden Spannungsverlauf für einen Lade- und einen Entladevorgang. Die Kapazität des Kondensators beträgt C = 100   n F . Die Spannungsquelle hat beim Einschalten eine Spannung von 40 V, die gleiche Spannung hat auch der Kondensator beim Abschalten. Der ohmsche Widerstand beträgt 1000   k Ω   .

  • Spannungsverlauf für einen Lade- und einen Entladevorgang eines Kondensators

Um eine geeignete Einteilung der Zeitachse zu ermöglichen, wird zuerst diejenige Zeit t   h ermittelt, die verstreicht, bis der Kondensator mit einer Spannung von 40 V zur Hälfte entladen ist:
U C ( t   h ) = U C 0 2 = U C 0 ⋅ e − t   h R C ,   a l s o   1 2 = e − t   h R C u n d   d a m i t   − ln 2 = − t   h R C   o d e r t   h = ln 2 ⋅ R ⋅ C = 0,693 ⋅ 10 6 V A ⋅ 10 − 7 A s V = 6,93 ⋅ 10 − 2 s = 69,3   m s

Die grafische Darstellung erfolgt mit Blick auf die Halbwertszeit im Zeitintervall von 0 bis 0,4 s bzw. von 0 bis 400 ms. Ferner gilt R ⋅ C = 10 6 V A ⋅ 10 − 7 A s V = 10 − 1 s .

Lernhelfer (Duden Learnattack GmbH): "Differenzialgleichungen zur Beschreibung des Lade- und Entladevorgangs eines Kondensators." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik-abitur/artikel/differenzialgleichungen-zur-beschreibung-des-lade-und (Abgerufen: 20. May 2025, 05:46 UTC)

Suche nach passenden Schlagwörtern

  • Kondensator
  • Schwingkreis
  • Differenzialgleichung
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Differenzialgleichungen zur Beschreibung von Federschwingungen

Ein Körper, der an einer Feder befestigt ist, führt nach einer Auslenkung eine Schwingung durch. Der Ort des Körpers wird durch die zeitabhängige Ortskoordinate y(t) beschrieben, deren Gleichung gefunden werden soll.
Im Folgenden werden mit einer derartigen Anordnung gedämpfte und ungedämpfte Schwingungen untersucht.

Differenzialgleichungen zur Beschreibung der Füllstandssteuerung einer Talsperre

Der Füllstand einer Talsperre wird ausgedrückt durch das (aktuelle) Stauvolumen V(t), das sich durch den Zu- und Abfluss von Wasser mit der Zeit t ändern kann. Zu- und Abfluss von Wasser geben an, welches Wasservolumen pro Zeiteinheit in die Talsperre hinein- bzw. aus ihr herausfließt.
Beide werden zusammengefasst zur Wasserzufuhr Z(t), die sich ebenfalls mit der Zeit ändern kann. Überwiegt der Zufluss, so gilt Z ( t ) ≥ 0, überwiegt dagegen der Abfluss, so ist Z ( t ) ≤ 0.

Unbeschränktes und logistisches Wachstum (Differenzialgleichungen)

Eine Population bestehe aus N Individuen. Nach einer Zeit Δ t ist eine Änderung Δ N mit Δ N = N ( t + Δ t ) − N ( t ) des Populationsumfangs N zu verzeichnen. Kann die Population ohne Beschränkung wachsen, so ist die Änderung proportional zum Ausgangsumfang – je mehr Individuen vorhanden sind, desto mehr Nachwuchs stellt sich ein. Es gilt also Δ N ∼ N  oder  Δ N = k N (unbeschränktes Wachstum), wobei k als Wachstumsrate (bei unbeschränktem Wachstum) bezeichnet wird.
Ist das Wachstum durch eine Obergrenze G der Individuenzahl beschränkt, so wird sich bei noch kleiner Individuenzahl ein annähernd unbeschränktes Wachstum einstellen, mit wachsender Zahl N wird die Wachstumsrate jedoch kleiner, um schließlich bei N = G den Wert 0 anzunehmen. Eine Beschränkung kommt beispielsweise zustande, wenn die Population in einem isolierten Gebiet lebt, in dem sich höchstens G Individuen ernähren können.

Die modifizierte Wachstumsrate
k b = k ( 1 − N G )
weist das erwartete Verhalten auf.

Als Differenzengleichung ergibt sich
Δ N = k b ⋅ N = k ⋅ ( 1 − N G ) ⋅ N
(logistisches Wachstum).

Richtungsfeld einer Differenzialgleichung

Gewöhnliche Differenzialgleichungen beschreiben Kurvenscharen in der Ebene. Eine Differenzialgleichung 1. Ordnung ordnet jedem Punkt der xy-Ebene einen Wert zu (vorausgesetzt, dass für den Punkt ein Wert definiert ist), welcher der Richtung der Tangente der Integralkurve in diesem Punkt entspricht, ein sogenanntes Linienelement.
Die Gesamtheit der Linienelemente ist das durch die Differenzialgleichung beschriebene Richtungsfeld. Das Bestimmen der Lösung der Differenzialgleichung ist das Bestimmen der Kurven, die auf dieses Richtungsfeld „passen“.

Differenzen- und Differenzialgleichungen

Gleichungen als typisches Arbeitsmittel und zugleich bedeutsamer Arbeitsgegenstand der Mathematik treten in der Schulmathematik vor allem als lineare, quadratische, goniometrische und Wurzelgleichungen auf. Sie werden zur Berechnung von Funktionswerten für gegebene Argumente, zur Bestimmung der Nullstellen und zur Ermittlung von Extrempunkten von Funktionen, zur analytischen Untersuchung von Eigenschaften geometrischer Gebilde u.a. genutzt. In allen diesen Fällen handelt es sich um Gleichungen, deren Lösungen Zahlen oder Größen sind.

Differenzen- und Differenzialgleichungen sind von anderer Natur, denn sie besitzen als Lösungen Folgen bzw. Funktionen. Dennoch sind sie uns nicht ganz unbekannt. So kann beispielsweise eine geometrische Folge explizit durch a i = s ⋅ q i ,   i ∈ ℕ ,   q , s ∈ ℝ beschrieben werden, aber auch durch die rekursive Bildungsvorschrift a 0 = s     u n d     a i     +   1 = q ⋅ a i ,   i ∈ ℕ .

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025