Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 4 Prozent- und Zinsrechnung
  4. 4.4 Rentenrechnung
  5. 4.4.1 Ratenzahlungen
  6. Ratenzahlung

Ratenzahlung

Eine wichtige Anwendung der Zinseszinsrechnung ist die Ratenzahlung.
Hierbei wird berechnet, welches Endkapital K n sich ergibt, wenn bei bekanntem Zinssatz jährliche Zahlungen (die sogenannten Raten) geleistet werden. Dabei ist zu unterscheiden, ob die Zahlungen am Anfang (vorschüssige Zahlung) oder am Ende (nachschüssige Zahlung) eines jeden Jahres erfolgen. Wenn man die Größe der Rate und die Anzahl der Jahre kennt, kann man den Zahlungsendwert ermitteln.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Eine wichtige Anwendung der Zinseszinsrechnung ist die Ratenzahlung.
Hierbei wird berechnet, welches Endkapital K n sich ergibt, wenn bei bekanntem Zinssatz jährliche Zahlungen (die sogenannten Raten) geleistet werden. Dabei ist zu unterscheiden, ob die Zahlungen am Anfang (vorschüssige Zahlung) oder am Ende (nachschüssige Zahlung) eines jeden Jahres erfolgen.

Ratenzahlungen (vorschüssig):
Wenn man den Zinssatz, die Größe der Rate und die Anzahl der Jahre kennt, kann man den Zahlungsendwert ermitteln. Die Formel lautet dann:
K n = R ⋅ q ⋅ ( q n − 1 ) q − 1 (Zahlung zum Jahresanfang)

Wenn man den Zinssatz, den Zahlungsendwert und die Anzahl der Jahre kennt, kann man die Größe der Rate ermitteln. Die Formel lautet dann:

R = K n ⋅ ( q − 1 ) q ( q n − 1 ) (Zahlung zum Jahresanfang)

Wenn man den Zinssatz, das Anfangskapital, die Anzahl der Jahre und die Größe der Rate kennt, kann man den Zahlungsendwert ermitteln. Die Formeln lauten dann:

K n = K 0 ⋅ q n + R ⋅ q ( q n − 1 ) q − 1 (Zahlung zum Jahresanfang)
K n = K 0 ⋅ q n − R ⋅ q ( q n − 1 ) q − 1 (Zahlung zum Jahresanfang)

Ratenzahlungen (nachschüssig):
Wenn man den Zinssatz, die Größe der Rate und die Anzahl der Jahre kennt, kann man den Zahlungsendwert ermitteln. Die Formel lautet dann:

K n = R ⋅ ( q n − 1 ) q − 1 (Zahlung zum Jahresende)

Wenn man den Zinssatz, den Zahlungsendwert und die Anzahl der Jahre kennt, kann man die Größe der Rate ermitteln. Die Formel lautet dann:

R = K n ⋅ ( q − 1 ) ( q n − 1 ) (Zahlung zum Jahresende)

Wenn man den Zinssatz, das Anfangskapital, die Anzahl der Jahre und die Größe der Rate kennt, kann man den Zahlungsendwert ermitteln. Die Formeln lauten dann:

K n = K 0 ⋅ q n + R ⋅ ( q n − 1 ) q − 1 (Zahlung zum Jahresende)
K n = K o ⋅ q n − R ⋅ ( q n − 1 ) q − 1 (Zahlung zum Jahresende)

  • Karl Holzhauser - MEV Verlag, Augsburg

Lernhelfer (Duden Learnattack GmbH): "Ratenzahlung." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/ratenzahlung (Abgerufen: 20. May 2025, 07:17 UTC)

Suche nach passenden Schlagwörtern

  • nachschüssig
  • Zahlungsendwert
  • Endkapital
  • Zinssatz
  • vorschüssig
  • Rate
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Logarithmengleichungen

Logarithmengleichungen nennt man solche Gleichungen, in denen die Variable im Argument des Logarithmus auftritt.

Festzinsen und variable Zinsen

Sowohl bei Geldanlagen als auch bei Krediten gibt es die Möglichkeit, für die Dauer des Geschäfts einen unveränderlichen, festen Zins zu vereinbaren oder eine Zinsanpassung zuzulassen.
Sparbücher haben im Normalfall einen variablen Zins, Festgelder dagegen einen unveränderlichen Zinssatz.
Bei Krediten gibt es Festzinsdarlehen für Anschaffungen oder den Dispositionskredit (Dispo) mit einem variablen Zins.

Zinsstaffel

Bei der kaufmännischen Zinsrechnung, insbesondere bei Abrechnungen zwischen Banken und Kunden, wird die Kontokorrentrechnung (Rechnung mit Soll und Haben) verwendet. Die Kontenseiten werden dabei aus der Sicht der Bank bezeichnet. Habenposten sind also für den Bankkunden Guthaben, Gutschriften, Einzahlungen, Überweisungseingänge usw. Sollposten sind für den Bankkunden Verbindlichkeiten, Abhebungen, Überweisungsausgänge, Abbuchungen eigener Schecks usw.

Grundwerte, Berechnen

Grundwerte können mit der Formel G = W p ⋅ 100 berechnet werden
(p: Prozentzahl; W: Prozentwert).

Zinszahlen, Zinsteiler

Bei der kaufmännischen Zinsrechnung sind vorwiegend Tageszinsen zu berechnen, wobei die Zinssätze im Allgemeinen p. a. (pro Jahr) angegeben werden.
Die Formel zum Berechnen der Tageszinsen wird dabei vereinfacht.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025