Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 3 Zahlen und Rechnen
  4. 3.1 Natürliche Zahlen
  5. 3.1.3 Vielfache und Teiler
  6. Weitere Teilbarkeitsregeln

Weitere Teilbarkeitsregeln

Eine Zahl ist durch 11 teilbar, wenn ihre Querdifferenz durch 11 teilbar ist.
Eine Zahl ist durch 7 teilbar, wenn die Zahl, die aus ihr nach einem bestimmten Algorithmus ermittelt wird, durch 7 teilbar ist.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Teilbarkeit durch 11

Eine Zahl ist durch 11 teilbar, wenn ihre Querdifferenz (die Differenz aus der Summe der an ungeraden Stellen stehenden Ziffern und der Summe der an geraden Stellen stehenden Ziffern) durch 11 teilbar ist.
(Sind beide Summen verschieden, subtrahiert man die kleinere von der größeren.)

Die Querdifferenz wird oftmals auch als alternierende Quersumme bezeichnet.

Beispiel:
2563 ist durch 11 teilbar.
Die Summe der an 1. und 3. Stelle stehenden Ziffern ist 3 + 5 = 8,
die Summe der an 2. und 4. Stelle stehenden Ziffern ist 6 + 2 = 8.
Also ist die Querdifferenz 8 – 8 = 0 und es gilt 11 | 0 (11 teilt 0).

Beispiel:
192709 ist durch 11 teilbar.
Die Summe der an ungeraden Stellen stehenden Ziffern ist
9 + 7 + 9 = 25,
die Summe der geraden Stellen stehenden Ziffern ist
0 + 2 + 1 = 3,
also ist die Querdifferenz 25 – 3 = 22 und 11 | 22 (11 teilt 22).

Teilbarkeit durch 7

Eine Zahl ist durch 7 teilbar, wenn die Zahl, die aus ihr nach folgendem Verfahren ermittelt wird, durch 7 teilbar ist:
Man multipliziere die am weitesten links stehende Ziffer mit 3 und addiere die nächste Ziffer. Man multipliziere das Ergebnis mit 3 und addiere die nächste Ziffer. Dies setze man so lange wie möglich fort. (Ist die entstehende Zahl zu groß, um die Teilbarkeit durch 7 entscheiden zu können, wendet man auf diese das obige Verfahren erneut an.)

Beispiel:
Zu untersuchen sei die Zahl 54971.

Man rechnet:
5 ⋅ 3 + 4 = 19 19 ⋅ 3 + 9 = 66 66 ⋅ 3 + 7 = 205 205 ⋅ 3 + 1 = 616 = 7 ⋅ 88 o d e r  616 nach diesem Verfahren: 6 ⋅ 3 + 1 = 19 19 ⋅ 3 + 6 = 63 = 7 ⋅ 9                           ⇒   D i e Z a h l  54971 ist durch 7 teilbar .

Lernhelfer (Duden Learnattack GmbH): "Weitere Teilbarkeitsregeln." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/weitere-teilbarkeitsregeln (Abgerufen: 15. July 2025, 19:14 UTC)

Suche nach passenden Schlagwörtern

  • Quersumme
  • Querdifferenz
  • Teilbarkeit
  • alternierende Quersumme
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Neunerprobe

Da für zwei kongruente Zahlen a 1 und a 2 mit a 1 ≡ r 1 mod b und a 2 ≡ r 2 mod b die Beziehung a 1 + a 2 ≡ r 1 + r 2 mod b gilt, ist der Neunerrest einer Summe gleich der Summe der Neunerreste der Summanden. Man braucht also nur die Reste mod 9 zu untersuchen.
Stimmen die Reste nicht überein, so ist die Rechnung mit Sicherheit falsch. Bei übereinstimmenden Resten ist die Richtigkeit des Resultates zwar nicht sicher, aber wahrscheinlich.
Die Neunerprobe kann auch bei der Subtraktion, Multiplikation und Division angewandt werden.

Schriftliche Multiplikation

Das Verfahren der schriftlichen Multiplikation beruht darauf, dass die Multiplikation kommutativ und assoziativ sowie distributiv bezüglich der Addition ist.
Die folgenden Beispiele sollen das Verfahren verdeutlichen.

Primzahlen

Eine Zahl p, die außer den (trivialen) Teilern 1 und p (sich selbst) keine weiteren Teiler hat, heißt Primzahl .
Die Zahl 1 zählt nicht zu den Primzahlen.
Die ersten Primzahlen sind also 2, 3, 5, 7, 11, 13, 17, 19.

Immer wieder hat man versucht, Prinzipien zu finden, mit deren Hilfe die nächste Primzahl bestimmt werden kann.
Heute weiß man, dass es keinen geschlossenen Ausdruck (keine Formel) gibt, nach der sich die n-te Primzahl berechnen lässt.
Man weiß aber auch, dass es keine größte Primzahl gibt, d. h., die Menge der Primzahlen ist unendlich.

Der Beweis dafür ist einfach und wird indirekt geführt:
Man nimmt an, pn  sei die größte Primzahl.
Nun bildet man die Zahl z als Produkt aller bekannten Primzahlen,
z235...pn . Für die Zahl z + 1 gilt nun z + 1  1 mod aller pi , d. h. z + 1 ist durch keine der bekannten Primzahlen teilbar. Damit ist z + 1 entweder eine Primzahl (natürlich größer als pn ) oder sie enthält eine Primzahl als Teiler, die aber auch größer als pn  sein muss, oder wir haben eine neue Primzahl gefunden, die kleiner als pn  ist. Also war die Annahme falsch und es gibt keine größte Primzahl.

In der Folge der nach ihrer Größe geordneten Primzahlen gibt es aber auch Lücken beliebiger Länge.

Auch dies ist einfach zu beweisen:
Man bildet das Produkt p aller Zahlen von 2 bis n: p234...n 
Damit ist p + 2 teilbar durch 2; p + 3 teilbar durch 3, ... , p + n teilbar durch n.
Die aufeinanderfolgenden Zahlen p + 2, p + 3, p + 4 bis p + n sind damit allesamt keine Primzahlen, man hat also eine Lücke von der Länge n – 1.

Eine Zahl p, die außer den (trivialen) Teilern 1 und p (sich selbst) keine weiteren Teiler hat, heißt Primzahl.
Die Zahl 1 zählt nicht zu den Primzahlen.
Die ersten Primzahlen sind also 2, 3, 5, 7, 11, 13, 17, 19.
Immer wieder hat man versucht, Prinzipien zu finden, mit deren Hilfe die nächste Primzahl bestimmt werden kann.
Heute weiß man, dass es keinen geschlossenen Ausdruck (keine Formel) gibt, nach der sich die n-te Primzahl berechnen lässt.
Man weiß aber auch, dass es keine größte Primzahl gibt, d. h., die Menge der Primzahlen ist unendlich.

Natürliche Zahlen, Historisches

Unser dekadisches Positionssystem geht auf den indischen Kulturkreis zurück. Der große arabische Mathematiker AL-CHWARIZMI erklärte und verwendete im Jahr 820 in seinem Lehrbuch der Arithmetik neue indische Ziffern. Im 12. Jahrhundert wurde dieses Buch in Spanien durch ROBERT VON CHESTER übersetzt. Von da aus traten dann die sogenannten arabischen Ziffern ihren Siegeszug an.

Primzahlen, Historisches

Schon die Mathematiker der Antike suchten nach einem Verfahren zum Finden von Primzahlen. Bekannt ist ERATOSTHENES (um 230 v. Chr.) der mit dem nach ihm benannten Sieb eine Methode angab, die Primzahlen der Reihe nach zu ermitteln.
Auch PIERRE DE FERMAT, LEONHARD EULER und MARIN MERSENNE haben viel zur Erforschung der Primzahlen beigetragen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025