Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Mathematik
  3. 3 Zahlen und Rechnen
  4. 3.1 Natürliche Zahlen
  5. 3.1.3 Vielfache und Teiler
  6. Weitere Teilbarkeitsregeln

Weitere Teilbarkeitsregeln

Eine Zahl ist durch 11 teilbar, wenn ihre Querdifferenz durch 11 teilbar ist.
Eine Zahl ist durch 7 teilbar, wenn die Zahl, die aus ihr nach einem bestimmten Algorithmus ermittelt wird, durch 7 teilbar ist.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Teilbarkeit durch 11

Eine Zahl ist durch 11 teilbar, wenn ihre Querdifferenz (die Differenz aus der Summe der an ungeraden Stellen stehenden Ziffern und der Summe der an geraden Stellen stehenden Ziffern) durch 11 teilbar ist.
(Sind beide Summen verschieden, subtrahiert man die kleinere von der größeren.)

Die Querdifferenz wird oftmals auch als alternierende Quersumme bezeichnet.

Beispiel:
2563 ist durch 11 teilbar.
Die Summe der an 1. und 3. Stelle stehenden Ziffern ist 3 + 5 = 8,
die Summe der an 2. und 4. Stelle stehenden Ziffern ist 6 + 2 = 8.
Also ist die Querdifferenz 8 – 8 = 0 und es gilt 11 | 0 (11 teilt 0).

Beispiel:
192709 ist durch 11 teilbar.
Die Summe der an ungeraden Stellen stehenden Ziffern ist
9 + 7 + 9 = 25,
die Summe der geraden Stellen stehenden Ziffern ist
0 + 2 + 1 = 3,
also ist die Querdifferenz 25 – 3 = 22 und 11 | 22 (11 teilt 22).

Teilbarkeit durch 7

Eine Zahl ist durch 7 teilbar, wenn die Zahl, die aus ihr nach folgendem Verfahren ermittelt wird, durch 7 teilbar ist:
Man multipliziere die am weitesten links stehende Ziffer mit 3 und addiere die nächste Ziffer. Man multipliziere das Ergebnis mit 3 und addiere die nächste Ziffer. Dies setze man so lange wie möglich fort. (Ist die entstehende Zahl zu groß, um die Teilbarkeit durch 7 entscheiden zu können, wendet man auf diese das obige Verfahren erneut an.)

Beispiel:
Zu untersuchen sei die Zahl 54971.

Man rechnet:
5 ⋅ 3 + 4 = 19 19 ⋅ 3 + 9 = 66 66 ⋅ 3 + 7 = 205 205 ⋅ 3 + 1 = 616 = 7 ⋅ 88 o d e r  616 nach diesem Verfahren: 6 ⋅ 3 + 1 = 19 19 ⋅ 3 + 6 = 63 = 7 ⋅ 9                           ⇒   D i e Z a h l  54971 ist durch 7 teilbar .

Lernhelfer (Duden Learnattack GmbH): "Weitere Teilbarkeitsregeln." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/mathematik/artikel/weitere-teilbarkeitsregeln (Abgerufen: 20. May 2025, 02:48 UTC)

Suche nach passenden Schlagwörtern

  • Quersumme
  • Querdifferenz
  • Teilbarkeit
  • alternierende Quersumme
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Schriftliche Division

Beim Verfahren der schriftlichen Division nutzt man das Distributivgesetz.
Die folgenden Beispiele sollen das Verfahren verdeutlichen.

Ganze Zahlen, Rechnen

Beim Rechnen mit ganzen Zahlen kann man die Verfahren des Rechnens mit natürlichen Zahlen anwenden; es sind dann immer nur gesonderte Überlegungen zur Ermittlung des Vorzeichens im Ergebnis nötig.
Das Rechenbeispiel umfasst die Grundrechenarten für zwei und mehrere ganze Zahlen. In allen Beispielen können die gegeben Ausgangswerte durch beliebige eigene Werte ersetzt werden, man erhält jeweils das entsprechende Resultat.

Kaprekarzahlen

Mithilfe der Subtraktion kann man eine interessante Eigenschaft dreistelliger Zahlen entdecken. Nach endlich vielen Rechenoperationen erhält man – unabhängig von der Ausgangszahl – stets 495.
Diese Zahl heißt Kaprekarzahl, nach dem indischen Mathematiker D.R. KAPREKAR, der diese Eigenschaft 1949 fand.

Neunerprobe

Da für zwei kongruente Zahlen a 1 und a 2 mit a 1 ≡ r 1 mod b und a 2 ≡ r 2 mod b die Beziehung a 1 + a 2 ≡ r 1 + r 2 mod b gilt, ist der Neunerrest einer Summe gleich der Summe der Neunerreste der Summanden. Man braucht also nur die Reste mod 9 zu untersuchen.
Stimmen die Reste nicht überein, so ist die Rechnung mit Sicherheit falsch. Bei übereinstimmenden Resten ist die Richtigkeit des Resultates zwar nicht sicher, aber wahrscheinlich.
Die Neunerprobe kann auch bei der Subtraktion, Multiplikation und Division angewandt werden.

Schriftliche Multiplikation

Das Verfahren der schriftlichen Multiplikation beruht darauf, dass die Multiplikation kommutativ und assoziativ sowie distributiv bezüglich der Addition ist.
Die folgenden Beispiele sollen das Verfahren verdeutlichen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025