Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 3 Thermodynamik
  4. 3.4 Hauptsätze der Thermodynamik
  5. 3.4.2 Kreisprozesse
  6. Carnotscher Kreisprozess

Carnotscher Kreisprozess

Der Carnotsche Kreisprozess, bestehend aus je zwei isothermen und adiabatischen Zustandsänderungen, repräsentiert die „Takte“ einer ideal arbeitenden Wärmekraftmaschine. Dabei wird das Arbeitsmittel als ideales Gas betrachtet und die Prozessführung als reversible angenommen.

1. Takt: Durch Aufnahme von Wärme erfolgt eine isotherme Expansion. Es wird die Arbeit verrichtet.
2. Takt: Bei einer adiabatischen Expansion verringert sich die Temperatur. Hierbei wird von dem Gas arbeitet verrichtet, seine innere Energie verringert sich.
3. Takt: Für die isotherme Kompression muss Arbeit zugeführt werden. Die dabei entstehende Wärme wird an die Umgebung abgegeben.
4. Takt: Durch eine adiabatische Kompression wird die Temperatur erhöht und damit der Ausgangszustand wieder erreicht.

Nach dem 1. Hauptsatz der Thermodynamik ist die abgegebene mechanische Arbeit gleich der Änderung der Wärme in dem System. Die von den Zustandskurven eingeschlossene Fläche ist ein Maß für die abgegebene Arbeit.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Kreisprozesse bei Wärmekraftmaschinen

Die Umwandlung von Wärme in mechanische Arbeit ist von großer wirtschaftlicher Bedeutung. Wird doch durch diesen Prozess die Energieform qualitativ so verändert, dass sie unmittelbar in Produktionsprozessen nutzbar ist. Dabei wird in Kauf genommen, dass ein Teil der zur Verfügung stehenden inneren Energie für die Umwandlung benötigt wird. Wie groß dieser Anteil ist und wie er verringert werden kann, war und ist eine zentrale Frage beim Bau von Wärmekraftmaschinen.

Die ersten Maschinen zur Umwandlung von thermischer in mechanischer Energie waren Dampfmaschinen. In ihnen wird der als Arbeitsmittel verwendete Wasserdampf nacheinander in immer wiederkehrende Zustände überführt. Einen solcher Prozess, in dem der Ausgangszustand stets wieder erreicht wird, nennt man Kreisprozess.
Die Arbeitsweise der Dampfmaschinen war Vorlage für die theoretischen Untersuchungen des französischen Ingenieurs und Physikers SADI CARNOT (1796-1832). In seiner berühmten Schrift „Betrachtungen über die bewegende Kraft des Feuers und die zur Entwicklung dieser Kraft geeigneten Maschinen“ zeigte er,

  • warum eine Dampfmaschine mechanische Arbeit verrichten kann und
  • wodurch ihr Wirkungsgrad bestimmt wird.

ÉMILE CLAPEYRON (1799-1864), ein Schulfreund von S. CARNOT, stellte den Kreisprozess der Dampfmaschine durch je zwei Isothermen und Adiabaten in einem p-V-Diagramm dar (Bild 1). Dabei wird der Dampf als ideales Gas betrachtet und die Prozessführung als reversible angenommen. Dieser Kreisprozess ist heute als carnotscher Kreisprozess bekannt. Er ist gut geeignet, die Funktionsweise von Energiewandlern zu erklären. Es ist darüber hinaus der Kreisprozess, der den höchsten Wirkungsgrad aufweist.

Der carnotsche Kreisprozess

CARNOT untersuchte den beschriebenen Prozess genauer. Eine Wärmekraftmaschine, die einen solchen Kreisprozess durchläuft, bezeichnet man auch als CARNOT-Maschine. CARNOT unterteilte den Kreisprozess in vier Teilprozesse. Sie sind ausführlich in Bild 2 dargestellt und nachfolgend erläutert:

(1) Isotherme Expansion: Im Ausgangspunkt A hat das als Arbeitsmittel genutzte Gas
die hohe Temperatur T 1 , den höchsten Druck p 1 und das kleinste Volumen V 1 .
Um eine isotherme Expansion, also eine Vergrößerung des Volumens bei konstanter Temperatur, zu realisieren, muss dem Gas eine Wärme Q 1 zugeführt werden. Diese wird einem heißen äußeren Wärmespeicher entnommen. Beim Übergang in den Zustand B vergrößert das Gas sein Volumen. Es wird Arbeit verrichtet. Dabei verringert sich der Druck.
Die Zustandsgleichung für die isothermen Expansion eines idealen Gases lautet:

p 1 ⋅   V 1 = p 2 ⋅   V 2

Die für die Zustandsänderung zugeführte Wärme ist
Q 1 = N   ⋅ k   ⋅ T 1 ⋅   ln V 2 V 1

(2) Adiabatische Expansion: Im Punkt B wird die Wärmezufuhr gestoppt. Das Gas dehnt sich aber weiterhin aus und kühlt sich dabei auf die Temperatur T 2 ab. Im Zustand C erreicht das Gas den kleinsten Druck und sein größtes Volumen. Die dabei verrichtete Arbeit führt zu einer Verringerung der inneren Energie des Gases. Der Kolben befindet sich im Umkehrpunkt.
Die Zustandsgleichung der adiabatischen Expansion des idealen Gases ist

p 2 ⋅ V 2 κ = p 3 ⋅ V 3 κ Dabei ist κ der Adiabatenexponent .

(3) Isotherme Kompression: Beim Übergang von C nach D wird bei konstanter Temperatur T 2 das Volumen des Gases auf V 1 verringert. Dabei erhöht sich der Druck. Für diesen Teilprozess muss Arbeit aufgewendet werden. Die dabei entstehende Wärme Q 2 wird an einen kalten äußeren Wärmespeicher (die Umgebung) abgeführt.
Die Zustandsgleichung der isothermen Kompression des idealen Gases lautet:

p 3 ⋅ V 3 = p 4 ⋅ V 4

Die dabei abgegebene Wärme ist:

Q 2 = N   ⋅ k   ⋅ T 2 ⋅   ln V 3 V 4

(4) Adiabatische Kompression: Im Punkt D ist die Wärme Q 2 abgegeben. Das Gas wird aber weiter komprimiert, bis das Ausgangsvolumen erreicht ist. In diesem Teilprozess erhöht sich der Druck und die Temperatur steigt wieder auf T 1 . Für die Realisierung dieses Teilprozesses muss ebenfalls Arbeit aufgewendet werden, die die innerer Energie des Gases erhöht. Der Kolben befindet sich im zweiten Umkehrpunkt, dem Ausgangspunkt A.
Die Gleichung für die adiabatische Kompression lautet:

p 4 ⋅ V 4 κ = p 1 ⋅ V 1 κ

Bei den adiabatischen Zustandsänderungen erfolgt jeweils eine Änderung der inneren Energie des Gases, die zu einer Erniedrigung bzw. zu einer Erhöhung der Temperatur führt.

Nach dem 1. Hauptsatz der Thermodynamik ist die abgegebene mechanische Arbeit W gleich der Änderung der Wärme in dem System. Die nach außen abgegebene Arbeit W ergibt sich aus der Differenz der zugeführten und abgegebenen Wärme bei den isothermen Teilprozessen:

W = Q 1 − Q 2

Dabei gilt für die Wärmen Q 1   > Q 2 , da die isotherme Expansion bei höherer Temperatur erfolgt als die isotherme Kompression.
Dies ist die Ursache, warum Dampfmaschinen, Verbrennungsmotoren und andere Wärmekraftmaschinen in der Lage sind, mechanische Arbeit zu verrichten. Die von den Isothermen und Adiabaten eingeschlossenen Fläche ist ein Maß für die nach außen abgegebene Arbeit. Sie kann durch Vergrößerung der Temperatur- und Volumendifferenzen verändert werden.

Der Wirkungsgrad beim carnotschen Kreisprozess

Wie groß die der Wirkungsgrad beim carnotschen Kreisprozess ist, lässt sich ebenfalls ermitteln. Der Wirkungsgrad ist das Verhältnis von abgegebener mechanischer Arbeit W zu zugeführter Wärme Q 1 .
Setzt man die entsprechenden Größen in die Gleichung für den Wirkungsgrad ein, so erhält man:

η = Q 1 − Q 2 Q 1 = 1 − Q 2 Q 1

Für den als reversibel angenommenen Prozess ergibt sich für das ideale Gas im carnotschen Kreisprozess:

η = 1 − T 2 ⋅ ln   ( V 3 / V 4 ) T 1 ⋅ ln   ( V 2 / V 1 )

Die Verhältnisse der Volumen können aus den Zustandsgleichungen der Teilprozesse ermittelt werden. Es ist:

V 2 V 1 = V 3 V 4

Für den Wirkungsgrad einer CARNOT-Maschine ergibt sich damit:

η = 1 − T 2 T 1 = T 1 − T 2 T 1

Er ist also nur von der Temperaturdifferenz des Prozessablaufs abhängig. Da es in der Natur und in der Technik keine vollkommen reversibel ablaufende Prozesse gibt, ist dies der höchstmögliche Wirkungsgrad, der beim Umwandeln von thermischer in mechanischer Energie erreicht werden kann.

Beispiel: Eine Dampfmaschine, deren heißer Wärmespeicher siedendes Wasser bei Normdruck von 373 K enthält und deren kalter Wärmespeicher gefrierendes Wasser von 273 K beinhaltet, hat demnach einen Wirkungsgrad von:

η = 373   K − 273   K 373   K = 0,27

Das ist ein erstaunlich niedriger Wert. Um diesen Wert zu erhöhen, muss die Temperaturdifferenz vergrößert werden. Technisch wird das durch ein Überhitzen des Wasserdampfes auf mehr als 500 K erreicht. Dabei wird das Wasser unter hohem Druck zum Sieden gebracht und der entstehende Dampf bei entsprechend hohem Druck in die Dampfturbinen eingeleitet. Dadurch werden in Kraftwerken bei der Erzeugung von Elektroenergie aus fossilen Brennstoffen Wirkungsgrade von bis zu 45 % erreicht.
Die Wirkungsgrade bei den Verbrennungsmotoren, die für Fahrzeuge genutzt werden (Dieselmotoren, Ottomotoren) liegen in der Regel deutlich niedriger.

Lernhelfer (Duden Learnattack GmbH): "Carnotscher Kreisprozess." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/carnotscher-kreisprozess (Abgerufen: 20. May 2025, 12:34 UTC)

Suche nach passenden Schlagwörtern

  • isotherme Kompression
  • Berechnung
  • CARNOT-Maschine
  • isotherme Zustandsänderungen
  • Kreisprozesse
  • Adiabate
  • adiabatische Expansion
  • carnotscher Kreisprozess
  • isotherme Expansion
  • adiabatische Kompression
  • Clapeyron
  • Sadi Carnot
  • Simulation
  • p-V-Diagramm
  • Rechenbeispiel
  • Wirkungsgrad
  • Wärmekraftmaschinen
  • Isotherme
  • adiabatische Zustandsänderungen
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Robert Stirling

* 25.10.1790 in Cloag, Schottland
† 06.06.1878 in Galston, Schottland

ROBERT STIRLING war ein schottischer Pfarrer, der zusammen mit seinem Bruder JAMES, einem Mechaniker, mehrere Maschinen entwickelte und patentieren ließ. 1816 meldete er mit 26 Jahren sein erstes Patent an. Die Grundidee bestand darin, den heißen Wasserdampf der Dampfmaschine durch Luft als Arbeitsmittel zu ersetzen. Zwei Jahre später baute er den ersten Heißluftmotor, die als Antrieb für eine Wasserpumpe eingesetzt wurde und eine Leistung von 2 PS (1,5 kW) lieferte.
Die Entwicklung des Stirling-Motors erfolgte ohne Kenntnis der thermodynamischen Grundlagen und ist eine geniale Ingenieurleistung.
Mitte des 19. Jahrhunderts erreichten Heißluftmotoren einen höheren Wirkungsgrad als Dampfmaschinen und wurden in größerer Zahl als Industriemotoren verwendet. Eine Verbreitung von Heißluftmotoren wurde vor allem durch das Fehlen geeigneter Materialien zur Herstellung der Zylinderköpfe und den Abdichtungen zwischen Gasraum und Getriebeteil verhindert.

James Watt

* 19.01.1736 in Greenrock bei Glasgow
† 19.08.1819 in Heathfield bei Birmingham

Er war ein schottischer Mechaniker und Naturforscher, war Universitätsmechaniker in Glasgow und dort mit der Wartung einer Dampfmaschine betraut. Überlegungen über die Verbesserung dieser Maschine führten ihn 1769 zur Erfindung einer Dampfmaschine mit getrenntem Kondensator, die sich als Antriebsmaschine durchsetzte.
Nach ihm ist heute die Einheit der Leistung benannt.

Wissenstest, Hauptsätze der Thermodynamik

In den Hauptsätzen der Thermodynamik sind grundlegende Zusammenhänge aus diesem Teilbereich der Physik erfasst. Der 1. Hauptsatz enthält den Zusammenhang zwischen der Änderung der inneren Energie, der Wärme und der Arbeit. Er ist Grundlage für die Wirkungsweise von Wärmekraftmaschinen. Die Vorgänge bei einer solchen Maschine lassen sich als Kreisprozess beschreiben. Der zweite Hauptsatz beinhaltet eine Aussage über in der Natur mögliche Prozesse.

Im Test können zu prüfen, ob Sie wichtige Zusammenhänge verstanden haben.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Hauptsätze der Thermodynamik".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Adiabatische Zustandsänderungen

Eine adiabatische Zustandsänderung ist dadurch gekennzeichnet, das bei dem Prozess keine Wärme mit der Umgebung (Q = 0) ausgetauscht wird. Dies kann bei allen schnell ablaufenden thermodynamischen Vorgängen angenommen werden. Charakteristisch für adiabatische Vorgänge ist, dass sich alle drei Zustandsgrößen Temperatur, Druck und Volumen gleichzeitig ändern. Die Adiabate im p-V-Diagramm verläuft daher steiler als Isothermen und schneidet diese.
Zu unterscheiden ist zwischen einer adiabatischen Expansion und einer adiabatischen Kompression. Die Energiebilanzen ergeben sich aus dem 1. Hauptsatz der Thermodynamik. Für das Modell ideales Gas kann die Adiabate p = p(V) berechnet werden. Es ergeben sich die poissonschen Gesetze.

Isotherme Zustandsänderungen

Nach dem 1. Hauptsatz der Thermodynamik kann eine isotherme Zustandsänderung, also eine Zustandsänderung bei konstanter Temperatur, durch folgende Prozesse realisiert werden:

  • Dem Gas wird eine Wärme Q zugeführt, es dehnt sich aus und verrichtet Volumenarbeit (isotherme Expansion).
  • An dem Gas wird die äußere Arbeit W verrichtet, das Volumen wird kleiner und die dabei entstehende Wärme wird abgegeben (isotherme Kompression).

Die bei einer isothermen Expansion vom Gas verrichtete Arbeit (Volumenarbeit) entspricht der Fläche unterhalb der Isobare im p-V- Diagramm. Sie kann durch Auszählen der Fläche oder durch Integration berechnet werden. Bei Verwendung des Modells ideales Gas beträgt die Volumenarbeit bei isothermer Expansion:

W = − N ⋅ k ⋅ T ⋅ ln V 2 V 1

Diese Arbeit ist gleich der dem Gas zugeführten Wärme, die dieses benötigt, um seine innere Energie bei der Expansion konstant zu halten.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025