Direkt zum Inhalt

25 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Wirkungsgrad

Der Wirkungsgrad eines Gerätes, einer Anlage oder eines Lebewesens gibt an, welcher Anteil der zugeführten Energie in nutzbringende Energie umgewandelt wird.

Formelzeichen:
Einheit:
η
1 oder in Prozent (%)

Der Wirkungsgrad ist damit ein Maß für die Güte der Energieumwandlung bzw. ein Maß für den Grad der Nutzbarkeit der zugeführten Energie. Er ist immer kleiner als 1 bzw. kleiner als 100 %.

Artikel lesen

Dampfturbine

Dampfturbinen sind Wärmekraftmaschinen, bei denen die Energie von Wasserdampf in kinetische Energie einer Rotationsbewegung umgewandelt wird. Sie dienen im Kraftwerken zum Antrieb von Generatoren.

Artikel lesen

Dieselmotor

Der Dieselmotor, benannt nach dem deutschen Erfinder RUDOLF DIESEL (1858-1913), ist ein Verbrennungsmotor, der mit Dieselkraftstoff betrieben wird. Es ist ein Viertaktmotor. Dieselmotoren werden vorrangig zum Antrieb von LKW, Lokomotiven, Schiffen und anderen schweren Maschinen und Anlagen verwendet. Die technischen Weiterentwicklungen ermöglichen es auch zunehmend, Dieselmotoren für PKW zu nutzen.

Artikel lesen

Ottomotor

Der Ottomotor, benannt nach dem deutschen Erfinder NIKOLAUS AUGUST OTTO (1832-1891), ist ein Verbrennungsmotor, der mit einem Benzin-Luft-Gemisch betrieben wird. Es gibt ihn als Viertakt- und Zweitaktmotor. Ottomotoren werden zum Antrieb von Motorrädern, PKW, Booten, Rasenmähern und vielen anderen Maschinen genutzt.

Artikel lesen

Wärmekraftmaschinen

Unter dem historischen Begriff Wärmekraftmaschinen fasst man die Maschinen und Anlagen zusammen, bei denen vor allem die Gesetze der Wärmelehre genutzt werden. Zu den Wärmekraftmaschinen gehören

  • die historisch bedeutsame Dampfmaschine,
  • die in Kraftwerken genutzten Dampfturbinen und Gasturbinen,
  • die verschiedenen Arten von Motoren (Ottomotor, Dieselmotor, Wankelmotor, Heißluftmotor),
  • die in Flugzeugen genutzten Strahltriebwerke,
  • Kühlschränke und Wärmepumpen.
Artikel lesen

Wärmepumpe

Wärmepumpen werden vor allem für die Heizung von Räumen und Gebäuden sowie für die Warmwassergewinnung genutzt. Dabei wird Erdwärme, die Wärme des Grundwassers oder die Wärme der Luft außerhalb des Gebäudes bei niedriger Temperatur aufgenommen und im Inneren des Gebäudes bei höherer Temperatur abgegeben. Dazu muss elektrische Energie zum Antrieb der Wärmepumpe zugeführt werden.
Das Grundprinzip einer Wärmepumpe wurde bereits um 1852 von dem englischen Physiker WILLIAM THOMSON (Lord KELVIN) gefunden. Intensiver genutzt werden Wärmepumpen aber erst seit etwa 1990.

Artikel lesen

James Watt

* 19.01.1736 Greenrock bei Glasgow
† 19.08.1819 Heathfield bei Birmingham
Er war ein schottischer Mechaniker und Naturforscher, war Universitätsmechaniker in Glasgow und dort mit der Wartung einer Dampfmaschine betraut. Überlegungen über die Verbesserung dieser Maschine führten ihn 1769 zur Erfindung einer Dampfmaschine mit getrenntem Kondensator, die sich als Antriebsmaschine durchsetzte.
Nach ihm ist heute die Einheit der Leistung benannt.

Artikel lesen

Mechanische Arbeit, Energie und Leistung

Mechanische Arbeit und Energie sind eng miteinander verknüpft: Jede Arbeit an einem Körper oder von einem Körper ist mit einer Energieänderung verbunden. Die Arbeitsgeschwindigkeit wird in der Physik als Leistung bezeichnet. Der Wirkungsgrad einer Anlage gibt die Güte an, mit der Energie von einer Form in andere Formen umgewandelt wird. Mit den Aufgaben wird das Wissen über die genannten fundamentalen Größen der Physik getestet.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Mechanische Arbeit, Energie und Leistung".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Glühlampen

Glühlampen sind die am weitesten verbreiteten elektrischen Lichtquellen, die vor allem zur Beleuchtung von Räumen und Arbeitsplätzen sowie zur Fahrzeugbeleuchtung dienen.
Genutzt wird bei Glühlampen die Lichtwirkung des elektrischen Stromes bei Stromfluss durch einen metallischen Leiter, den Glühdraht.
Die ersten Glühlampen wurden von dem Deutschen HEINRICH GOEBEL (1818-1893), dem Russen ALEXANDER LODYGIN (1847-1923) und dem amerikanischen Erfinder THOMAS ALVA EDISON (1847-1931) entwickelt. Insbesondere EDISON gelang es, erste im Alltag wirklich brauchbare Glühlampen zu bauen.

Artikel lesen

Leuchtstofflampen

Leuchtstofflampen, auch Leuchtstoffröhren oder Energiesparlampen genannt, sind Lichtquellen, bei denen elektrische Leitungsvorgänge in Gasen und die damit verbundenen Leuchterscheinungen genutzt werden. Die umfangreichere Nutzung von Leuchtstofflampen begann erst in den 60er Jahren des 20. Jahrhunderts. 1986 kamen die ersten elektronisch geregelten kompakten Leuchtstofflampen (Energiesparlampen) auf den Markt. Durch sie können herkömmliche Glühlampen ersetzt werden.
Der Hauptvorteil von Leuchtstofflampen gegenüber herkömmlichen Glühlampen besteht in ihrem etwa 5-mal so hohen Wirkungsgrad.

Artikel lesen

Brennstoffzellen

Die Brennstoffzelle ist ein Spezialfall eines galvanischen Elements, bei dem chemische Energie direkt in elektrische Energie umgewandelt wird. Während sich bei Batterien und Akkumulatoren die an den chemischen Reaktionen beteiligten Materialien allmählich verbrauchen, werden bei der Brennstoffzelle die Ausgangsstoffe und Produkte der Reaktion kontinuierlich zu- und abgeführt. Betrieben wird sie üblicherweise mit Wasserstoff und Sauerstoff. Ein einzelnes Element einer typischen Brennstoffzelle liefert eine Gleichspannung von knapp einem Volt. Praktische Ausführungen arbeiten mit Hintereinanderschaltungen vieler solcher Elemente. Man unterscheidet je nach Betriebstemperatur Nieder-, Mittel- und Hochtemperaturbrennstoffzellen.
Gegenwärtig ist die Entwicklung leistungsfähiger Brennstoffzellen ein Schwerpunkt der technischen Forschung.

Artikel lesen

Robert Stirling

* 25.10.1790 in Cloag, Schottland
† 06.06.1878 in Galston, Schottland

ROBERT STIRLING war ein schottischer Pfarrer, der zusammen mit seinem Bruder JAMES, einem Mechaniker, mehrere Maschinen entwickelte und patentieren ließ. 1816 meldete er mit 26 Jahren sein erstes Patent an. Die Grundidee bestand darin, den heißen Wasserdampf der Dampfmaschine durch Luft als Arbeitsmittel zu ersetzen. Zwei Jahre später baute er den ersten Heißluftmotor, die als Antrieb für eine Wasserpumpe eingesetzt wurde und eine Leistung von 2 PS (1,5 kW) lieferte.
Die Entwicklung des Stirling-Motors erfolgte ohne Kenntnis der thermodynamischen Grundlagen und ist eine geniale Ingenieurleistung.
Mitte des 19. Jahrhunderts erreichten Heißluftmotoren einen höheren Wirkungsgrad als Dampfmaschinen und wurden in größerer Zahl als Industriemotoren verwendet. Eine Verbreitung von Heißluftmotoren wurde vor allem durch das Fehlen geeigneter Materialien zur Herstellung der Zylinderköpfe und den Abdichtungen zwischen Gasraum und Getriebeteil verhindert.

Artikel lesen

Stirlingscher Kreisprozess

Der stirlingsche Kreisprozess, bestehend aus je zwei isothermen und isochoren Zustandsänderungen, repräsentiert die „Takte“ eines ideal arbeitenden Heißluftmotors. Dabei wird das Antriebsmittel „Luft“ als ideales Gas betrachtet und die Prozessführung als reversible angenommen.

  1. Durch Aufnahme einer bestimmten Wärme aus einem heißen Wärmespeicher erfolgt eine isotherme Expansion. Es wird die Arbeit verrichtet.
  2. Durch eine isochore Abkühlung wird die Temperatur verringert. Dabei wird Wärme abgegeben.
  3. Takt: Für die isobare Kompression muss Arbeit zugeführt werden. Die dabei entstehende Wärme Δ wird an einen kalten Wärmespeicher abgegeben.
  4. Takt: Durch eine isochore Erwärmung wird nun die Temperatur erhöht und damit der Ausgangszustand wieder erreicht. Dazu wird die Wärme zugeführt.

Die Differenz aus verrichteter und zugeführten Arbeit kann von der Maschine nach aßen abgegeben werden.

Artikel lesen

James Watt

* 19.01.1736 in Greenrock bei Glasgow
† 19.08.1819 in Heathfield bei Birmingham

Er war ein schottischer Mechaniker und Naturforscher, war Universitätsmechaniker in Glasgow und dort mit der Wartung einer Dampfmaschine betraut. Überlegungen über die Verbesserung dieser Maschine führten ihn 1769 zur Erfindung einer Dampfmaschine mit getrenntem Kondensator, die sich als Antriebsmaschine durchsetzte.
Nach ihm ist heute die Einheit der Leistung benannt.

Artikel lesen

Wissenstest, Hauptsätze der Thermodynamik

In den Hauptsätzen der Thermodynamik sind grundlegende Zusammenhänge aus diesem Teilbereich der Physik erfasst. Der 1. Hauptsatz enthält den Zusammenhang zwischen der Änderung der inneren Energie, der Wärme und der Arbeit. Er ist Grundlage für die Wirkungsweise von Wärmekraftmaschinen. Die Vorgänge bei einer solchen Maschine lassen sich als Kreisprozess beschreiben. Der zweite Hauptsatz beinhaltet eine Aussage über in der Natur mögliche Prozesse.

Im Test können zu prüfen, ob Sie wichtige Zusammenhänge verstanden haben.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Hauptsätze der Thermodynamik".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Windkraftwerk

In einem Windkraftwerk, auch als Windkraftanlage bezeichnet, wird aus dem Primärenergieträger strömende Luft (Wind) als Sekundärenergieträger elektrischer Strom gewonnen. Es wird somit kinetische Energie der Luft (Windenergie) in elektrische Energie umgewandelt.

Artikel lesen

Transformator

Transformatoren werden verwendet, um elektrische Energie eines Wechselstromes von einem Primärstromkreis auf einen Sekundärstromkreis zu übertragen. Bei dieser Übertragung kann man die Werte für die Spannungen und Stromstärken verändern. Das Funktionsprinzip von Transformatoren beruht auf der elektromagnetischen Induktion.

Artikel lesen

Dampfmaschine

Die Dampfmaschine ist die erste historisch bedeutsame Wärmekraftmaschine zur Umwandlung von thermischer in mechanischer Energie. Erfinder der ersten industriell genutzten Dampfmaschine ist der Engländer THOMAS NEWCOMEN (1663- 1729), Vorarbeiten leistete DENIS PAPIN (1647-1712).
Die Dampfmaschine wurde von dem schottischen Techniker JAMES WATT (1776-1819) so weiterentwickelt, dass sie als Antriebsmaschine in den verschiedensten Bereichen (für Pumpen, Textilmaschinen, Mühlen, Pflüge, Lokomotiven) genutzt werden konnte. Die theoretischen Grundlagen, um die Funktionsweise der Dampfmaschinen zu erklären, wurden erst mehr als 50 Jahre später von dem französischen Ingenieur und Physiker SADI CARNOT ( 1796-1832) geschaffen.
Die Industrialisierung des 19. Jahrhunderts ist eng mit der Einführung und Nutzung von Dampfmaschinen verbunden.

Artikel lesen

Heißluftmotor

Das von dem schottischen Pfarrer ROBERT STIRLING 1816 angemeldete Patent eines Heißluftmotors ist bis heute ein Gegenstand technischer Forschungen geblieben. Der Grund dafür ist das geniale Funktionsprinzip dieses Motors. Wie bei einer Dampfmaschine erfolgt die Erzeugung der thermischen Energie durch äußere Verbrennung. Der Heißluftmotor, auch STIRLING-Motor genannt, lässt sich daher mit allen Brennstoffen betreiben und ist insbesondere auch für die Verwendung von erneuerbaren Energien wie Holz, Biogase und Solarwärme geeignet.

Artikel lesen

Energie des Wassers und Wasserkraftwerke

In einem Wasserkraftwerk wird aus dem Primärenergieträger Wasser als Sekundärenergieträger elektrischer Strom gewonnen. Je nach Bauart unterscheidet man zwischen Laufwasserkraftwerken und Speicherkraftwerken. Spezielle Arten sind Pumpspeicherkraftwerke und Gezeitenkraftwerke.

Artikel lesen

Energie des Windes und deren Nutzung

Der Wind ist der Menschheit als Energiequelle bereits viele Jahrhunderte in Form von Windmühlen zum Mahlen von Getreide und zum Antrieb von Pumpen für die Feldbewässerung vertraut. Doch erst seit der Ölpreiskrise von 1973 ist der Wind als Energielieferant für die Stromerzeugung ins Blickfeld gerückt. Seither wird die Entwicklung von Windkraftwerken vorangetrieben, die mittels der Drehung ihrer Rotorblätter einen Generator antreiben, der elektrischen Wechselstrom produziert. Seit 1997 ist Deutschland weltweit führend in der Windenergienutzung

Artikel lesen

Der Wirkungsgrad

Der Wirkungsgrad eines Gerätes, einer Anlage oder eines Lebewesens gibt an, welcher Anteil der zugeführten Energie in nutzbringende Energie umgewandelt wird.

Formelzeichen:
Einheit:
η
1 oder in Prozent (%)

Der Wirkungsgrad ist damit ein Maß für die Güte der Energieumwandlung bzw. ein Maß für den Grad der Nutzbarkeit der zugeführten Energie. Er ist immer kleiner als 1 bzw. kleiner als 100 %.

Artikel lesen

Wissenstest, Mechanische Arbeit, Energie und Leistung

Zentrale Größen der Physik sind die Größen Energie, Arbeit und Leistung. Sie spielen auch weit über die Physik hinaus eine Rolle, insbesondere der Begriff Energie und solche damit zusammenhängenden Begriff wie Energieversorgung, Energieerhaltung, Energietransport oder Energieentwertung. Der Test dient der Prüfung grundlegender Kenntnisse über Energie, Arbeit und Leistung.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Energie, mechanische Arbeit und Leistung".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Artikel lesen

Nicolas Léonard Sadi Carnot

* 01.06.1796 Paris
† 24.08.1832 Paris

Er war ein französischer Ingenieur und Physiker. Nach seinem Studium an der École Polytechnique diente er in der Armee NAPOLEONs als Ingenieuroffizier. Seine theoretischen Untersuchungen zur Wirkungsweise der Dampfmaschine hatten das Ziel, den Wirkungsgrad zu erhöhen und die Einführung der Dampfmaschinen in Frankreich zu fördern. Mit seiner berühmten Schrift „Betrachtungen über die bewegende Kraft des Feuers und die zur Entwicklung dieser Kraft geeigneten Maschinen“ begründete er die technische Thermodynamik.
Nach ihm ist der thermodynamische Kreisprozess benannt, der aus je zwei isothermen und adiabatischen Zustandsänderungen besteht und der den höchstmöglichen Wirkungsgrad bei Kreisprozessen hat.

Artikel lesen

Carnotscher Kreisprozess

Der Carnotsche Kreisprozess, bestehend aus je zwei isothermen und adiabatischen Zustandsänderungen, repräsentiert die „Takte“ einer ideal arbeitenden Wärmekraftmaschine. Dabei wird das Arbeitsmittel als ideales Gas betrachtet und die Prozessführung als reversible angenommen.

1. Takt: Durch Aufnahme von Wärme erfolgt eine isotherme Expansion. Es wird die Arbeit verrichtet.
2. Takt: Bei einer adiabatischen Expansion verringert sich die Temperatur. Hierbei wird von dem Gas arbeitet verrichtet, seine innere Energie verringert sich.
3. Takt: Für die isotherme Kompression muss Arbeit zugeführt werden. Die dabei entstehende Wärme wird an die Umgebung abgegeben.
4. Takt: Durch eine adiabatische Kompression wird die Temperatur erhöht und damit der Ausgangszustand wieder erreicht.

Nach dem 1. Hauptsatz der Thermodynamik ist die abgegebene mechanische Arbeit gleich der Änderung der Wärme in dem System. Die von den Zustandskurven eingeschlossene Fläche ist ein Maß für die abgegebene Arbeit.

25 Suchergebnisse

Fächer
  • Physik (25)
Klassen
  • 5. Klasse (12)
  • 6. Klasse (12)
  • 7. Klasse (12)
  • 8. Klasse (12)
  • 9. Klasse (12)
  • 10. Klasse (12)
  • Oberstufe/Abitur (13)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025