Transformator

Transformatoren werden verwendet, um elektrische Energie eines Wechselstromes von einem Primärstromkreis auf einen Sekundärstromkreis zu übertragen. Bei dieser Übertragung kann man die Werte für die Spannungen und Stromstärken verändern. Das Funktionsprinzip von Transformatoren beruht auf der elektromagnetischen Induktion.

Physikalische Grundlagen

In einer Spule wird eine Spannung induziert, wenn das sie durchsetzende Magnetfeld seine Stärke ändert. Wird das veränderliche Magnetfeld durch eine von Wechselstrom durchflossene Spule erzeugt, dann stellt die Anordnung von zwei benachbarten Spulen eine einfache Möglichkeit dar, elektrische Energie von einem Stromkreis auf einen anderen zu übertragen. Damit die Übertragung möglichst verlustfrei erfolgt, müssen sich beide Spulen dicht beieinander befinden. Die magnetische Kopplung wird erhöht, wenn die Spulen gemeinsam auf einem ringförmigen Eisenkern gewickelt sind. Um zu vermeiden, dass sich größere Mengen elektrischer Energie bei der Übertragung in Wärme umwandeln, verwendet man meist Eisenkerne, die aus genieteten Metallplättchen bestehen. Dadurch wird die Ausbildung von Wirbelströmen unterdrückt. Dennoch müssen größere Transformatoren mitunter durch Luft, Wasser oder Öl gekühlt werden. Die von den Spulen ausgehenden Kraftwirkungen können auch einen Verlust durch mechanischer Energieabgabe bewirken. Das Brummen, das man gelegentlich an Transformatorenhäuschen hören kann, stammt letztlich aus elektrischer Energie, die im Takt des Wechselstromes in mechanische Schwingungsenergie der Transformatorenbauteile umgewandelt wird.
Obgleich immer Verluste in einem Transformator auftreten, nimmt man für vereinfachende Untersuchungen an, dass diese Verluste unter Idealbedingungen zu vernachlässigen sind. Einen verlustfreien Transformator bezeichnet man als idealen Transformator. Reale Transformatoren kommen dem Ziel der vollständigen Energieübertragung schon sehr nahe. Ihr Wirkungsgrad beträgt fast 99% und kann zukünftig durch den Einsatz von gekühlten Stromleitern ohne elektrischen Widerstand, so genannten Supraleitern, wahrscheinlich noch weiter verbessert werden.

Ist der Sekundärstromkreis nicht geschlossen, dann wird der Transformator auch nicht belastet. Man spricht von einem unbelasteten Transformator. In diesem Fall entzieht der Sekundärstromkreis dem Transformator keine elektrische Energie. Wird der Sekundärstromkreis an einen Verbraucher angeschlossen, zum Beispiel eine Glühlampe, dann gibt der Transformator elektrische Energie an diesen Verbraucher ab. Der Transformator wird belastet. Er wird als belasteter Transformator bezeichnet. Da die elektrische Energie letztlich aber aus dem Sekundärstomkreis stammt, bleibt die Belastung eines Transformators auch nicht ohne Auswirkungen auf den Primärstromkreis. Im Einzelnen kommt es zu folgenden Vorgängen:
Zunächst fließt in dem geschlossenen Sekundärstromkreis ein elektrischer Strom, der nach der lenzschen Regel der Ursache seiner Entstehung entgegengesetzt gerichtet ist und demzufolge das Magnetfeld im Transformator schwächt. Dadurch wird auch die Sekundärspule von einem schwächeren Magnetfeld durchsetzt. Da das Magnetfeld der Primärspule nach dem lenzschen Gesetz dem Stromfluss im Primärstromkreis entgegengesetzt gerichtet ist, bedeutet die Schwächung dieses Magnetfeldes, dass nun ein stärkerer Strom im Primärstromkreis fließen kann. Entzieht man dem Transformator Strom auf der Sekundärseite, so erhöht sich ebenfalls die Stromstärke auf der Primärseite. Das bezeichnet man als Rückwirkung.

Schließt man den Sekundärstromkreis kurz, dann fließen sowohl im Primär- als auch im Sekundärstromkreis sehr hohe Stromstärken. Ein Transformator kann gegebenenfalls durch die damit verbundene thermische Belastung zerstört werden.
Insgesamt beeinflussen sich Primär- und Sekundärseite eines Transformators durch gegenseitige Wechselwirkung.

Die Transformatorgesetze

Die Übertragung der Spannungen und Stromstärken im Transformator stehen in einem engen Zusammenhang mit den Windungszahlen der Transformatorenspulen. Bezeichnen U1, I1 und N1 die Spannung, Stromstärke und Windungszahl der Primärspule und U2, I2 und N2 die entsprechenden Größen bei der Sekundärspule, dann gelten für einen idealen Transformator folgende Gesetze:

Gesetze der Spannungsübersetzung: U1U2=N1N2

Gesetze der Stromstärkenübersetzung: I1I2=N2N1

Für einen idealen Transformator, also einen Transformator, bei dem keine Energieverluste auftreten, ist die aufgenommene Leistung genauso groß wie die abgegebene Leistung. Es gilt:

U1I1=U2I2

Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.

Lernhelfer-App für dein Smartphone oder Tablet

Learnattack

Gemeinsam zu besseren Noten: Kooperation mit Duden Learnattack

Lernvideos, interaktive Übungen und WhatsApp-Nachhilfe – jetzt Duden Learnattack 48 Stunden kostenlos testen.

Du wirst automatisch zu Learnattack weitergeleitet.
Lexikon Share
Beliebte Artikel
alle anzeigen

Einloggen