Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 5 Optik
  4. 5.2 Ausbreitung des Lichtes in Stoffen und im Vakuum
  5. 5.2.1 Die Lichtgeschwindigkeit
  6. Die Lichtgeschwindigkeit und ihre Bestimmung

Die Lichtgeschwindigkeit und ihre Bestimmung

Das Licht breitet sich im Vakuum in allen Richtungen und unabhängig von der Bewegungsgeschwindigkeit der Lichtquelle oder des Lichtempfängers mit einer Geschwindigkeit von 299.792,458 km/s aus. Das ist zugleich die größte Geschwindigkeit, mit der sich Informationen ausbreiten können. Die Vakuumlichtgeschwindigkeit ist eine grundlegende Naturkonstante. Sie wird heute auch genutzt, um die Einheit 1 m zu definieren, die eine Basiseinheit des Internationalen Einheitensystems ist. In Luft breitet sich Licht näherungsweise mit der Vakuumlichtgeschwindigkeit aus, in anderen Stoffen ist die Lichtgeschwindigkeit kleiner.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Das Licht breitet sich im Vakuum in allen Richtungen und unabhängig von der Bewegungsgeschwindigkeit der Lichtquelle oder des Lichtempfängers mit einer Geschwindigkeit von 299.792,458 km/s aus. Die Lichtgeschwindigkeit in Vakuum ist eine grundlegende Naturkonstante der gesamten Physik.

Formelzeichen:
Einheiten:
c
Kilometer je Sekunde ( km/s)
 

Messung der Lichtgeschwindigkeit

Wegen ihres sehr großen Zahlenwertes war es lange Zeit nicht möglich, die Größe der Lichtgeschwindigkeit zu messen. Einige Physiker glaubten irrtümlich sogar, das Licht könne sich mit unendlich großer Geschwindigkeit ausbreiten. Als erstem Wissenschaftler gelang dem dänischen Gelehrten OLAF RÖMER (1644-1710) die Ermittlung der Lichtgeschwindigkeit. Allerdings gründete sich seine Bestimmung nicht auf ein physikalisches Experiment, sondern auf astronomische Beobachtungen:

RÖMER war bei langjährigen Beobachtungen der Verfinsterungen des Jupitermondes Io aufgefallen, dass diese zeitlichen Schwankungen unterliegen. Solche Verfinsterungen ereignen sich, wenn Io in den Jupiterschatten eintritt und damit für den irdischen Beobachter nicht mehr sichtbar ist. Eigentlich hätte man erwarten sollen, dass diese Verfinsterungen in genau periodischen Zeitabständen wiederkehren, denn sie werden schließlich durch die Stellung von Jupiter, Sonne und Io bestimmt, die ihrerseits den strengen Gesetzen der Himmelsmechanik unterliegt.

RÖMER vermutete, dass der beobachtete Zeitunterschied als „Verspätungseffekt“ beim Eintreffen des Lichtsignals von Io auf der Erdoberfläche gedeutet werden kann. Dieser kommt zustande, weil der Lichtweg bis zur Erde auch von der Stellung der Erde bezüglich des Jupitersystems abhängt, die sich im Laufe eines Jahres mit der Bahnbewegung der Erde um die Sonne ändert. Diese Vermutung bedeutete jedoch ebenfalls, dass die Lichtgeschwindigkeit einen zwar hohen, aber dennoch endlichen Zahlenwert haben musste, denn die „Lichtverspätung“ wäre bei unendlich hoher Lichtgeschwindigkeit ja nicht aufgefallen. Aus seinen Beobachtungen konnte RÖMER die Lichtgeschwindigkeit von 214.000 km/s errechnen.

  • Bestimmung der Lichtgeschwindigkeit durch RÖMER

Die erste Messung der Lichtgeschwindigkeit auf der Erde gelang den französischen Physiker HIPPOLYTE FIZEAU (1819-1896). Die nebenstehende Abbildung zeigt seine Versuchsanordnung. Als Strecke wählte er 8.633 m. Das Zahnrad hatte 720 Zähne. Das Licht wurde von der Lichtquelle über den halbdurchlässigen Spiegel zwischen zwei Zähnen des Zahnrades hindurch auf den Spiegel gelenkt, dort reflektiert und gelangte durch die gleiche Lücke des Zahnrades hindurch auf den halbdurchlässigen Spiegel zum Auge des Beobachters. Wurde das Zahnrad in immer schnellere Umdrehungen versetzt, so trat bei einer Drehzahl von 12,6 Umdrehungen pro Sekunde eine Verdunklung auf. Das Licht hatte nun offenbar nicht mehr den Durchtritt durch die Lücke geschafft sondern traf auf einen Zahn des Zahnrades. Aus seinen Untersuchungsergebnissen ermittelte FIZEAU im Jahre 1849 einen Wert für die Lichtgeschwindigkeit von 313.350 km.

Ein anderer französischer Physiker, LEON FOUCAULT, (1819-1868) entwickelte FIZEAUs Methode weiter und ersetzt das Zahnrad durch einen Drehspiegel. FOUCAULT ermittelte für die Lichtgeschwindigkeit einen Zahlenwert von 298.000 km/s. In den ersten Jahrzehnten des 20. Jahrhunderts gelang dem Amerikaner ALBERT ABRAHAM MICHELSON (1852-1931), die Drehspiegelmethode weiter zu verfeinern. MICHELSON ermittelte im Jahre 1927 die Lichtgeschwindigkeit zu (299.796 ± 4) km/s. Dieser Zahlenwert hatte für längere Zeit Gültigkeit.
Noch genauere Bestimmungen der Lichtgeschwindigkeit wurden mit Interferometern vorgenommen. Heute gilt als verbindlicher und international festgelegter Wert für die Lichtgeschwindigkeit im Vakuum:

c = 299.792.458 m/s

Berechnung der Lichtgeschwindigkeit

Zur Berechnung der Lichtgeschwindigkeit stehen verschiedene Gleichungen zur Verfügung. Da es sich beim Licht um elektromagnetische Wellen handelt, kann man seine Ausbreitungsgeschwindigkeit mithilfe der Gleichung zur Berechnung der Ausbreitungsgeschwindigkeit von Wellen ermitteln. Diese Gleichung lautet:

c = λ ⋅ f λ Wellenlänge f Frequenz

Die Ausbreitungsgeschwindigkeit kann auch anders bestimmt werden. Sind ε 0 die elektrische Feldkonstante und μ 0 die magnetische Feldkonstante, dann gilt für die Vakuumlichtgeschwindigkeit:

c = 1 ε 0 ⋅ μ 0

Für die Lichtgeschwindigkeit in Stoffen muss die obige Gleichung durch die Permeabilitätszahl μ r und die Permittivitätszahl (Dielektrizitätszahl) ε r ergänzt werden. Die Ausbreitungsgeschwindigkeit berechnet sich dann mithilfe der Gleichung:

c = 1 ε 0 ⋅ ε r ⋅ μ 0 ⋅ μ r

Abgesehen von diamagnetischen Materialien, deren Permeabilitätszahl etwas kleiner als 1 ist, besitzen die Stoffe Permeabilitätszahlen und Dielektrizitätszahlen, die größer als 1 sind. Daher ist in allen Stoffen die Lichtgeschwindigkeit auch immer kleiner als im Vakuum.

Werte für die Lichtgeschwindigkeit
In der nachfolgenden Übersicht sind einige Werte für Lichtgeschwindigkeiten in verschiedene Stoffe angegeben.

StoffLichtgeschwindigkeit in km/s
Vakuum299 792,458
Luft299 000 ≈ 300 000
Eis229 000
Wasser225 000
Plexiglas201 000
Kronglas leicht199 000
Kronglas schwer186 000
Flintglas leicht186 000
Flintglas schwer171 000
Diamant124 000

Die Lichtgeschwindigkeit gilt heute als so genau bestimmt, dass man sie international 1983 als Grundkonstante festgelegt hat und z.B. für die Definition von Einheiten nutzt. Dabei geht man von dem oben bereits genannten Wert c = 299.792.458 m/s aus. Die Einheit 1 m, eine Basiseinheit des Internationalen Einheitensystems, wurde folgendermaßen festgelegt:

Ein Meter ist die Länge der Strecke, die das Licht im Vakuum während der Dauer von 1/299.792.458 Sekunden durchläuft.

  • Versuchsanordnung von FIZEAU zur Bestimmung der Lichtgeschwindigkeit auf der Erde
Lernhelfer (Duden Learnattack GmbH): "Die Lichtgeschwindigkeit und ihre Bestimmung." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/die-lichtgeschwindigkeit-und-ihre-bestimmung (Abgerufen: 20. May 2025, 07:20 UTC)

Suche nach passenden Schlagwörtern

  • Olaf Römer
  • Drehspiegelmethode
  • Interferometer
  • Michelson
  • Berechnung der Lichtgeschwindigkeit
  • Lichtgeschwindigkeit
  • Naturkonstante
  • Fizeau
  • Foucault
  • Basiseinheit des Internationalen Einheitensystems
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Photonen

Licht kann man sich als einen Strom von winzigen Energieportionen, den Photonen, vorstellen. Jedes dieser Photonen besitzt Energie und bewegt sich mit Lichtgeschwindigkeit. Ihm kann eine Masse und ein Impuls zugeordnet werden.
Photonen entstehen in der Atomhülle. Zwischen ihrer Energie und der Frequenz des Lichtes besteht direkte Proportionalität.

Beugung von Licht

Unter der Beugung von Licht versteht man die Erscheinung, dass sich Licht hinter schmalen Spalten, kleinen Hindernissen und Kanten auch in die Schattenräume hinein ausbreitet. Beugung ist eine wellentypische Erscheinung. Erklärt werden kann die Beugung mithilfe des huygensschen Prinzips.
Ein experimentelles Beispiel für das Auftreten von Beugung bei Licht ist der POISSON-Fleck, benannt nach dem französischen Mathematiker und Physiker S. D. POISSON (1781-1840).

Augustin Jean Fresnel

* 10.05.1788 in Broglie/Normandie
† 14.07.1827 in Ville D´Avray bei Paris

Er war zunächst als Wege- und Wasserbautechniker im französischen Staatsdienst, später dann als Physiker tätig. Mit seinen Beiträgen zur Beugung, Interferenz und Polarisation des Lichtes schuf er die Grundlagen der Wellenoptik.

Interferenz an dünnen Schichten

Die Flügel einer Libelle, eine dünne Ölschicht auf Wasser oder eine Seifenblase schillern in den unterschiedlichsten Farben. Ursache dafür ist die Interferenz von Licht, das auf eine dünne Schicht trifft und an der Vorder- und der Rückseite dieser Schicht reflektiert wird. Das an verschiedenen Stellen reflektierte Licht überlagert sich. Es kommt zu farbigen Interferenzmustern.
Wichtige Fälle, die sich auch gut mathematisch beschreiben lassen, sind die Interferenz an planparallelen Schichten und die Interferenz an keilförmigen Schichten. Ein spezieller Fall sind die newtonsche Ringe, mit deren Hilfe man z.B. die Qualität von Linsen prüfen kann.

Licht als Transversalwelle

Licht hat Welleneigenschaften und kann mit dem Modell Lichtwelle beschrieben werden. Dabei stellt sich die Frage, ob Licht eine Transversal- oder eine Longitudinalwelle ist und was bei Licht eigentlich schwingt. Aus experimentellen Untersuchungen ist ableitbar:

  •  
Licht ist eine elektromagnetische Welle und damit eine Transversalwelle.
  •  
Periodisch ändern sich elektrische Feldstärke und magnetische Flussdichte, wobei man als Schwingungsrichtung in der Regel die Richtung der elektrischen Feldstärke darstellt.

Wie andere Transversalwellen ist damit Licht auch polarisierbar. Das wird in vielfältiger Weise genutzt.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025