Elektromotoren

Elektromotoren

Elektromotoren dienen der Umwandlung von elektrischer Energie in mechanische Energie, die dann zur Verrichtung von mechanischer Arbeit eingesetzt wird. Sie nutzen für diese Umwandlung das folgende physikalische Wirkprinzip: Befindet sich ein stromdurchflossener Leiter in einem Magnetfeld, dann wirkt auf ihn eine Kraft bzw. ein Drehmoment. Elektromotoren sind so konstruiert, dass dieses Drehmoment zu einer periodischen Drehbewegung führt.

Aufgeschnittener Elektromotor

Gleichstrommotoren
Die wesentlichen Bauteile eines Gleichstrommotors sind der Feldmagnet (Stator), der drehbar gelagerte Anker (Rotor), der Kollektor und die Kohlebürsten (Bild 2).
Die Wirkungsweise kann in unterschiedlicher Weise erklärt werden. Ein Erklärungsmuster geht davon aus, dass sich im Magnetfeld des Feldmagneten (Dauer- oder Elektromagnet) der Rotor befindet, der aus stromdurchflossenen Leitern besteht. Auf stromdurchflossene Leiter im Magnetfeld wirken Kräfte. Da der Rotor drehbar gelagert ist, bewirken die außerhalb der Drehachse angreifenden Kräfte ein Drehmoment, das zu einer Rotation des Rotors führt.

Prinzipieller Aufbau eines Gleichstrommotors

Möglich ist auch folgendes Erklärungsmuster: Durch den Feldmagneten wird ein magnetisches Feld aufgebaut. In diesem Feld ist ein Elektromagnet drehbar gelagert - der Rotor. Über Kohlebürsten als Schleifkontakte wird der Anker an eine Stromquelle angeschlossen. Durch den Stromfluss im Anker wird dieser magnetisch, wodurch Kräfte zwischen Feldmagneten und Anker auftreten. Gleiche Magnetpole stoßen sich ab, ungleiche Magnetpole ziehen sich an. Diese abstoßenden und anziehenden Kräfte zwischen den Magnetpolen führen zu einer Drehbewegung des Ankers.

Material zum Thema
  • Java-Applet, W. Fendt
    Format: HTM

Wenn sich die ungleichen Magnetpole des Feldmagneten und des Ankers direkt gegenüberstehen, muss das Magnetfeld des Ankers umgepolt werden, damit sich die Drehbewegung fortsetzt (Bild 3). Dies geschieht durch den Kollektor (Polwender). Durch die Trägheit der Drehbewegung rotiert der Anker über den Totpunkt hinweg. Dabei kehrt sich die Stromrichtung im Anker um. Nun treten wieder abstoßende und anziehende Kräfte zwischen Feldmagneten und Anker auf, die zur Fortsetzung der Drehbewegung führen.
Damit eine möglichst gleichförmige Drehbewegung erfolgt, nutzt man in der Technik nicht die in den Skizzen angegebenen einfachen Doppel-T-Anker, sondern wesentlich komplizierter aufgebaute Trommelanker mit einer entsprechend großen Anzahl von Polen. Dadurch wird auch ein besseres Anlaufen und eine gleichmäßigere Drehbewegung erreicht. Bei Motoren größerer Leistung muss ein Anlasswiderstand vorgeschaltet werden.
Gleichstrommotoren können als Reihenschlussmotor oder als Hauptschlussmotor geschaltet sein. Erläuterungen dazu sind weiter unten gegeben. Gleichstrom-Nebenschlussmotoren eignen sich für Antriebe kleinerer Leistung mit begrenztem Drehzahlstellbereich. Gleichstrom-Hauptschlussmotoren werden wegen der stark lastabhängigen Drehzahlkennlinie vor allem als Antriebsmotoren für Fahrzeuge (Kräne, Straßenbahnen, Elektroloks) genutzt.

Wechselstrommotoren
Der häufig als Elektromagnet ausgelegte Feldmagnet wird mit Gleichstrom betrieben. Steht nur eine Wechselstromquelle zur Verfügung, dann muss dieser vor der Zuleitung in die Feldspule gleichgerichtet werden. Durch die feste Stromrichtung im Feldmagneten entsteht ein konstantes Magnetfeld mit ruhenden Magnetpolen.
Durch den Anker wird hingegen Wechselstrom geleitet. Dieser Wechselstrom bewirkt die Entstehung eines Magnetfeldes, dessen Pole sich im Takt des Wechselstromes ändern. Bei der Netzfrequenz (50 Hz) polt sich das Magnetfeld des Ankers also 50-mal je Sekunde um. Dadurch wechseln auch 50-mal in einer Sekunde anziehende und abstoßende Kräfte zwischen Feldmagneten und Anker ihre Richtung. Würde man den Anker aus seiner Ruhelage heraus unter Wechselstrom setzen, dann könnte er infolge seiner Trägheit nur kleine „Zitterbewegungen“ ausführen.
Versetzt man den Anker aber vor der Stromzuführung bereits in Rotationsbewegung, dann kann er bei richtiger Drehfrequenz seine Rotation fortsetzen. Dies geschieht dann, wenn der Anker in dem Moment, in dem er sich gerade am magnetischen Nordpol des Feldmagneten vorbei bewegt, infolge der Stromumpolung dort auch selbst seinen eigenen magnetischen Nordpol ausbildet. Die gleichnamigen Pole stoßen sich ab und die Drehbewegung wird fortgesetzt. Gleiches gilt für die magnetischen Südpole.
Bei der beschriebenen Bauform eines Wechselstrommotors muss der Anker mit der gleichen Frequenz rotieren, mit der auch der elektrische Wechselstrom seine Richtung ändert. Man nennt solche Motoren Synchronmotoren. Daneben gibt es auch Asynchronmotoren. Bei ihnen wird die Drehbewegung durch ein rotierendes Drehfeld hervorgerufen, wobei konstruktionsbedingt ein Schlupf, d.h. eine Differenz zwischen der Drehfelddrehzahl und der Läuferdrehzahl, auftritt.

Gleichstrommotoren als Wechselstrommotoren
Wenn man bei einem Gleichstrommotor die Anschlüsse des Feldmagneten vertauscht, dann bewegt er sich rückwärts. Vertauscht man gleichzeitig die Anschlüsse von Feldmagneten und Anker, dann behält der Gleichstrommotor seine ursprüngliche Drehrichtung bei. Ein Wechselstrom bedeutet aber nichts anderes als das ständige „Vertauschen“ der Stromrichtung. Deshalb kann ein Gleichstrommotor im Grunde auch als Wechselstrommotor betrieben werden. Für praktische Zwecke hat man allerdings zu berücksichtigen, dass durch die ständige Umpolung sehr starke induktive Widerstände in den Spulen hervorgerufen werden. Dabei gilt: Je höher die Wechselstromfrequenz ist, desto größer ist der induktive Widerstand. Man muss also Gleichstrommotoren für den Betrieb unter Wechselstrom entsprechend der Netzfrequenz anpassen. Insbesondere bei Hochleistungsmotoren bemüht man sich, Verluste durch die induktiven Widerstände der Motorspulen zu vermeiden. Deshalb betreibt zum Beispiel die Eisenbahn ein eigenes Stromnetz, dessen Netzfrequenz nur 16,66 Hz beträgt.

Vereinfachte Darstellung der Wirkungsweise eines Gleichstrommotors

Nebenschluss- und Hauptschlussmotoren

Um starke Elektromotoren zu erhalten, reicht das Magnetfeld eines Dauermagneten als Feldmagnet nicht aus. Es werden deshalb Elektromagnete als Feldmagnete genutzt. Für die Spulen des Ankers und des Feldmagneten kann man dieselbe Spannungsquelle verwenden. Je nachdem, wie man die Spulen schaltet, erhält man einen Nebenschlussmotor (Spulen sind parallel geschaltet) oder einen Hauptschlussmotor (Spulen sind in Reihe geschaltet). Ein Hauptschlussmotor wird deshalb auch als Reihenschlussmotor bezeichnet.

Nebenschluss- und Hauptschlussmotor im Vergleich

Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.

Lernhelfer-App für dein Smartphone oder Tablet

Lexikon Share
Beliebte Artikel
alle anzeigen

Einloggen