Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 2 Mechanik
  4. 2.5 Mechanik starrer Körper
  5. 2.5.2 Kinematik rotierender starrer Körper
  6. Größen zur Beschreibung der Rotation

Größen zur Beschreibung der Rotation

Die translatorische Bewegung eines Körpers kann mit den Größen Weg, Geschwindigkeit und Beschleunigung beschrieben werden. Analog dazu kann man die Bewegung eines rotierenden starren Körpers mit den Größen Drehwinkel, Winkelgeschwindigkeit und Winkelbeschleunigung beschreiben. Teilweise werden auch die Größen Umlaufzeit und Drehzahl mit genutzt. In der Dynamik kommen als weitere Größen das Drehmoment und das Trägheitsmoment hinzu.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Drehzahl und Umlaufzeit

Eine Möglichkeit zur Beschreibung rotierender Körper besteht darin, ihre Drehzahl und ihre Umlaufzeit anzugeben. So führt z.B. der Sekundenzeiger einer Uhr in einer Minute eine vollständige Umdrehung aus. Seine Drehzahl beträgt dann 1/min. Ein Punkt auf der Erdoberfläche rotiert in 24 Stunden einmal um die Erdachse. Seine Drehzahl hat einen Wert von 1/(24 Stunden).
Allgemein gilt:

  • L. Meyer, Potsdam

Die Drehzahl gibt an, wie viele Umdrehungen um eine Achse ein Körper in einer bestimmten Zeiteinheit ausführt.
Formelzeichen: n
Einheit: eins durch Sekunde ( 1 s = s − 1 )
Die Zeit für einen vollen Umlauf wird als Umlaufzeit bezeichnet.
Formelzeichen: T
Einheit: eine Sekunde (1 s)

Zwischen den beiden Größen Drehzahl und Umlaufzeit besteht ein einfacher Zusammenhang:

T = 1 n oder n = 1 T

Beträgt in einer beliebigen Zeit t die Anzahl der Umdrehungen N, so gelten für die Umlaufzeit T bzw. die Drehzahl n die folgenden Beziehungen:

T = N t n = t N

Drehwinkel und Weg

Als Maß für die Drehung eines starren Körpers wird der Drehwinkel gewählt (Bild 2).

Der Drehwinkel gibt an, um welchen Winkel ein Körper gedreht wird.

Formelzeichen: ϕ
Einheit: ein Grad (1°) oder ein Radiant (1 rad)

Eine volle Umdrehung entspricht einem Winkel von 360° in Gradmaß oder 2   π in Bogenmaß. Damit gilt:

1   rad = 180 ° π = 57,3 ° 1° = π 180 °   rad = 0,017   rad

Häufig wird die Einheit rad weggelassen. Als einfache Beziehungen zwischen Gradmaß und Bogenmaß kann man sich merken:

360 ° = 2   π 180 ° = π 90 ° = π 2

Zwischen dem Drehwinkel und dem Weg, den ein Punkt P zurücklegt (Bild 2), gilt die Beziehung:

s = ϕ ⋅ r s vom Punkt P zurückgelegter Weg ϕ Drehwinkel r Abstand des Punktes P von der Drehachse

Winkelgeschwindigkeit und Bahngeschwindigkeit

Die Schnelligkeit der Änderung des Drehwinkels wird durch die physikalische Größe Winkelgeschwindigkeit erfasst.

Die Winkelgeschwindigkeit gibt an, wie schnell sich der Drehwinkel ändert.

Formelzeichen: ω Einheit: eins durch Sekunde ( 1 s = s − 1 )

Die Winkelgeschwindigkeit kann berechnet werden mit der Gleichung:
ω = Δ ϕ Δ t
Die Winkelgeschwindigkeit ist eine vektorielle Größe. Ihre Richtung zeigt immer in Richtung der Drehachse und ergibt sich mithilfe der Rechte-Hand-Regel (Korkenzieherregel): Zeigen die gekrümmten Finger der rechten Hand in Drehrichtung des Körpers, so gibt die Richtung des Daumens die Richtung der Winkelgeschwindigkeit an. Mathematisch ist die Winkelgeschwindigkeit das Vektorprodukt (Kreuzprodukt) aus dem Radius und der Geschwindigkeit:
ω → = r →   ×   v →
Die Winkelgeschwindigkeit kann auch aus der Drehzahl und der Umlaufzeit ermittelt werden, denn für den Zusammenhang zwischen diesen Größen gilt:
ω = 2   π T = 2   π ⋅ n

Ein Punkt P eines rotierenden starren Körpers weiter weg von der Drehachse legt bei gleichem Drehwinkel je Zeiteinheit und damit bei gleicher Winkelgeschwindigkeit einen größeren Kreisbogen und damit auch einen größeren Weg zurück als ein Punkt nahe an der Drehachse. Die Geschwindigkeit, mit der sich ein Punkt eines starren Körpers auf einer Kreisbahn bewegt, wird als Bahngeschwindigkeit bezeichnet. Zwischen der Winkelgeschwindigkeit des starren Körpers und der Bahngeschwindigkeit eines seiner Punkte besteht die folgende Beziehung:

v = ω ⋅ r v Bahngeschwindigkeit eines Punktes ω Winkelgeschwindigkeit des Körpers r Abstand des Punktes von der Drehachse

Bei einer gleichförmigen Rotation ist die Winkelgeschwindigkeit konstant, bei einer beschleunigten Rotation (Anlaufen einer Motorwelle) oder einer verzögerten Rotation (Abbremsen eines Schwungrades) verändert sie sich mit der Zeit.

Winkelbeschleunigung und Bahnbeschleunigung

Die Schnelligkeit der Änderung der Winkelgeschwindigkeit wird durch die physikalische Größe Winkelbeschleunigung erfasst.

Die Winkelbeschleunigung gibt an, wie schnell sich die
Winkelgeschwindigkeit eines rotierenden Körpers ändert.

Formelzeichen: α Einheit: eins durch Quadratsekunde ( 1 s 2 = s − 2 )

Die Winkelbeschleunigung kann berechnet werden mit der Gleichung:
α = Δ ω Δ t

Sie ist wie die Winkelgeschwindigkeit eine vektorielle Größe. Ihre Richtung stimmt mit der der Winkelgeschwindigkeit überein. Die Winkelbeschleunigung ist somit auch ein axialer Vektor.

Rotiert ein Körper beschleunigt, so bewegen sich auch seine einzelnen Punkte längs ihrer Bahn beschleunigt. Diese Beschleunigung eines Punktes auf seiner Bahn wird als Bahnbeschleunigung bezeichnet. Zwischen der Winkelbeschleunigung und der Bahnbeschleunigung gilt folgende Beziehung:
a = α ⋅ r a Bahnbeschleunigung eines Punktes α Winkelbeschleunigung des Körpers r Abstand des Punktes von der Drehachse

Weitere Größen und Zusammenhänge

Mit den genannten Größen können alle kinematischen Zusammenhänge bei der Rotation beschrieben werden. Bezieht man die Dynamik mit ein, so sind weitere Größen erforderlich. Es handelt sich dabei um das Drehmoment und das Trägheitsmoment. Genauere Informationen sind unter diesen Stichwörtern zu finden.

Ein Vergleich der oben genannten Gleichungen zeigt, dass zwischen den Größen der Translation und den entsprechenden Größen der Rotation ein jeweils völlig analoger Zusammenhang besteht. Für die kinematischen Größen ist dieser Zusammenhang in Bild 4 dargestellt.

Lernhelfer (Duden Learnattack GmbH): "Größen zur Beschreibung der Rotation." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/groessen-zur-beschreibung-der-rotation (Abgerufen: 23. July 2025, 21:07 UTC)

Suche nach passenden Schlagwörtern

  • Bahnbeschleunigung
  • Größen
  • Bahngeschwindigkeit
  • Berechnung
  • Umlaufzeit
  • Winkelbeschleunigung
  • Weg
  • Rotation
  • Drehzahl
  • Winkelgeschwindigkeit
  • Gradmaß
  • Bogenmaß
  • Rechenbeispiel
  • Drehwinkel
  • Trägheitsmoment
  • Drehmoment
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Bezugssysteme

Um den Ort und die Bewegung von Körpern oder ihren energetischen Zustand eindeutig beschreiben zu können, muss ein Bezug zu einem Vergleichskörper hergestellt werden, auf den sich die Angaben beziehen. Zur genauen Kennzeichnung des Ortes, an dem sich ein Körper jeweils befindet, ist darüber hinaus ein Koordinatensystem erforderlich.
Einen Bezugskörper und ein damit verbundenes Koordinatensystem bezeichnet man als Bezugssystem.
Seine Wahl ist willkürlich und zumeist dem jeweiligen Zweck angepasst. Dabei ist zwischen unbeschleunigten und beschleunigten Bezugssystemen zu unterscheiden.

Allgemeine Bewegungsgesetze

Bewegungen können auf unterschiedlicher Bahnen in verschiedener Art erfolgen: Sie können geradlinig oder krummlinig verlaufen, können gleichförmig, gleichmäßig beschleunigt oder ungleichmäßig beschleunigt sein. Für alle speziellen Fälle lassen sich die entsprechenden Bewegungsgesetze formulieren.
Man kann die Bewegungsgesetze aber auch so allgemein formulieren, dass fast alle Spezialfälle aus ihnen ableitbar sein. Diese allgemeinen Bewegungsgesetze sind in dem Beitrag dargestellt und erläutert.

Drehimpuls

Bei der Translation charakterisiert der Impuls den Bewegungszustand eines Körpers. In analoger Weise lässt sich bei der Rotation der Bewegungszustand eines rotierenden starren Körpers durch die physikalische Größe Drehimpuls kennzeichnen. Der Drehimpuls eines Körpers kann berechnet werden mit der Gleichung:

L → = J ⋅ ω → J Trägheitsmoment des Körpers ω → Winkelgschwindigkeit

Bewegungsarten und Bahnformen

Bewegungen von Körpern unterscheiden sich nicht nur danach, wie sie sich längs einer Bahn bewegen, sondern auch nach der Form ihrer Bahn. Nach der Art der Bewegung (Bewegungsart) wird differenziert zwischen

  • unbeschleunigten Bewegungen ( a → = 0 → ) und
  • beschleunigten Bewegungen ( a → ≠ 0 → ) .

Bei den beschleunigten Bewegungen wiederum kann man unterscheiden zwischen gleichmäßig beschleunigten Bewegungen ( a → = konstant ) und ungleichmäßig beschleunigten Bewegungen. Nach der Form der Bahn (Bahnform) wird unterschieden zwischen

  • geradlinige Bewegungen und
  • krummlinige Bewegungen.

Eine spezielle krummlinige Bewegung ist die Kreisbewegung. Sie ist zu unterscheiden von der Drehbewegung eines Körpers um eine Achse.

Grundgesetz der Dynamik der Rotation

Bei der Translation gilt zwischen der Kraft F, der Masse m und der Beschleunigung a der grundlegende Zusammenhang F → = m ⋅ a → , das newtonsche Grundgesetz. Es wird auch als Grundgesetz der Dynamik der Translation bezeichnet. Für die Rotation starrer Körper gibt es ein analoges Gesetz, das Grundgesetz der Dynamik der Rotation. Es lautet:
Für den Zusammenhang zwischen dem an einem Körper angreifenden Drehmoment, seinem Trägheitsmoment und der Winkelbeschleunigung gilt die Gleichung:
M → = J ⋅ α → M Drehmoment J Trägheitsmoment α Winkelbeschleunigung

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025