Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 2 Mechanik
  4. 2.5 Mechanik starrer Körper
  5. 2.5.3 Dynamik rotierender starrer Körper
  6. Rotationsenergie

Rotationsenergie

Jeder bewegte Körper besitzt kinetische Energie (Bewegungsenergie). Das gilt auch für rotierende starre Körper, z.B. Schwungräder, die Rotoren von Generatoren und Motoren oder einen Kreisel.
Die in einem Körper gespeicherte Rotationsenergie hängt vom Trägheitsmoment dieses Körpers und von seiner Winkelgeschwindigkeit ab. Es gilt:

E r o t = 1 2 J ⋅ ω 2 J Trägheitsmoment ω Winkelgeschwindigkeit

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Das gilt auch für rotierende starre Körper, z.B. Schwungräder, die Rotoren von Generatoren und Motoren, rotierende Räder oder einen Kreisel.

Die Energie, die ein rotierender starrer Körper besitzt, wird als Rotationsenergie bezeichnet.

Herleitung der Gleichung

Die Gleichung für die Rotationsenergie ergibt sich aus folgender Überlegung: Jedes Masseelement eines rotierenden starren Körpers besitzt eine bestimmte kinetische Energie, die von der Masse selbst und von der Geschwindigkeit abhängig ist (Bild 2). Die Geschwindigkeit wiederum hängt bei bestimmter Winkelgeschwindigkeit vom Abstand von der Drehachse ab:

E i = 1 2 Δ m i ⋅ v i 2 und mit v i = ω ⋅ r i E i = 1 2 Δ m i ⋅ ω 2 ⋅ r 1 2

Die Gesamtenergie, die dann als Rotationsenergie des Körpers bezeichnet wird, ergibt sich als Summe der kinetischen Energien aller Masseelemente:

E r o t = ∑ i = 1 n E i = 1 2 ω 2 ⋅ ∑ i = 1 n Δ m i ⋅ r 1 2 Der Term ∑ i = 1 n Δ m i ⋅ r 1 2 ist das Trägheitsmoment J . Demzufolge erhält man: E r o t = 1 2 J ⋅ ω 2

Ein Beispiel für die Anwendung

Als Beispiel betrachten wir eine Kugel, die eine geneigte Ebene der Höhe h hinabrollt. Für eine solche Kugel kann man z.B. untersuchen, welche Energie sie besitzt und welche Geschwindigkeit sie erreicht, wenn sie die Höhe h hinabrollt.

Wir nehmen an, dass die Kugel mit der Masse m in der Höhe h zunächst ruht. Sie hat dann potenzielle Energie:
E p o t = m ⋅ g ⋅ h
Beim Hinabrollen wandelt sich diese potenzielle Energie in kinetische Energie um, wobei sich diese kinetische Energie aus zwei Anteilen zusammensetzt: Zum einen führt der Schwerpunkt der Kugel eine Translation aus. Die Kugel hat damit kinetische Energie der Translation. Zugleich rotiert die Kugel, hat also auch Rotationsenergie:
E B e w e g u n g = E k i n + E r o t = 1 2 m ⋅ v 2 + 1 2 J ⋅ ω 2
Vernachlässigt man die Reibung, dann gilt der Energieerhaltungssatz der Mechanik. Die gesamte potenzielle Energie wird in Bewegungsenergie umgewandelt:
m ⋅ g ⋅ h = 1 2 m ⋅ v 2 + 1 2 J ⋅ ω 2 Setzt man in diese Gleichung das Trägheitsmoment einer Kugel ( J = 2 5 m ⋅ r 2 ) ein , so erhält man: m ⋅ g ⋅ h = 1 2 m ⋅ v 2 + 1 2 ⋅ 2 5 m ⋅ r 2 ⋅ ω 2 Mit ω = v r erhält man: m ⋅ g ⋅ h = 1 2 m ⋅ v 2 + 2 10 m ⋅ v 2 Die Division durch m und die Umstellung nach v ergibt: v = 10 7 g ⋅ h
Das wäre die Geschwindigkeit einer Kugel beim Hinabrollen, wenn die Ausgangshöhe h wäre. Sie ist unabhängig von der Masse der Kugel. Die Geschwindigkeit einer Kugel ist kleiner als die eines reibungsfrei herabgleitenden Körpers ( v = 2   g ⋅ h ) . Das ist deshalb der Fall, weil bei einem solchen herabgleitenden Körper die gesamte potenzielle Energie in kinetische Energie der Translation umgewandelt wird. Bei rotierenden Körpern dagegen wird immer in Teil der potenziellen Energie in Rotationsenergie umgewandelt. Damit ist der Anteil der kinetischen Energie der Translation und damit auch auch die Geschwindigkeit kleiner.

Lernhelfer (Duden Learnattack GmbH): "Rotationsenergie." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/rotationsenergie (Abgerufen: 09. June 2025, 20:37 UTC)

Suche nach passenden Schlagwörtern

  • kinetische Energie
  • Bewegungsenergie
  • Berechnung
  • Winkelgeschwindigkeit
  • Kugel
  • Masseelement
  • Rechenbeispiel
  • Trägheitsmoment
  • Rotationsenergie
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Heinrich Friedrich Emil Lenz

* 12.02.1804 in Dorpat
† 10.02.1865 in Rom

Er war ein russischer Physiker deutscher Herkunft, der in St. Petersburg als Physikprofessor tätig war und sich insbesondere mit Problemen der Elektrizitätslehre beschäftigte. Er entdeckte das nach ihm benannte lenzsche Gesetz über die Richtung des Induktionsstromes.

Rudolf Clausius

* 02.02.1822 in Köslin
† 24.08.1888 in Bonn

Er war ein deutscher Physiker, der als Professor in Zürich, Würzburg und Bonn tätig war. CLAUSIUS leistete wesentliche Beiträge zur Entwicklung der Thermodynamik. Insbesondere formulierte er als Erster den 2. Hauptsatz der Wärmelehre.

Drehimpuls

Bei der Translation charakterisiert der Impuls den Bewegungszustand eines Körpers. In analoger Weise lässt sich bei der Rotation der Bewegungszustand eines rotierenden starren Körpers durch die physikalische Größe Drehimpuls kennzeichnen. Der Drehimpuls eines Körpers kann berechnet werden mit der Gleichung:

L → = J ⋅ ω → J Trägheitsmoment des Körpers ω → Winkelgschwindigkeit

Gleichförmige Drehbewegung

Eine gleichförmige Drehbewegung liegt vor, wenn ein starrer Körper mit konstanter Winkelgeschwindigkeit rotiert. Beispiele dafür sind ein Riesenrad oder eine mit bestimmter Drehzahl rotierende Motorwelle. Die dafür geltenden Gesetze sind analog zu den Gesetzen für die gleichförmige Bewegung bei der Translation:
α = 0 ω = Δ ϕ Δ t ϕ = ω ⋅ t + ϕ 0

Gleichmäßig beschleunigte Drehbewegung

Eine gleichmäßig beschleunigte Drehbewegung liegt vor, wenn bei einem rotierenden starren Körper die Winkelbeschleunigung konstant und ungleich null ist. Beispiele dafür sind der Rotor eines gleichmäßig anlaufenden Elektromotors oder ein rotierendes Schwungrad, das gleichmäßig abgebremst wird. Für eine solche gleichmäßig beschleunigte Drehbewegung gelten die analogen Gesetze wie für eine gleichmäßig beschleunigte geradlinige Bewegung:
α =   konstant ω = α ⋅ t + ω 0 ϕ = 1 2 α ⋅ t 2 + ω 0 ⋅ t + ϕ 0

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025