Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 2 Mechanik
  4. 2.5 Mechanik starrer Körper
  5. 2.5.3 Dynamik rotierender starrer Körper
  6. Wissenstest, Mechanik starrer Körper

Wissenstest, Mechanik starrer Körper

Die Mechanik starrer Körper kann unterteilt werden in die Statik starrer Körper und in die Dynamik rotierender starrer Körper. Gearbeitet wird mit dem Modell starrer Körper. Das bedeutet: Es wird sowohl die Form der Körper als auch die Verteilung ihrer Masse bezüglich einer Drehachse berücksichtigt. Beispiele für rotierende starre Körper sind Wellen bei Maschinen, Schwungräder, die Rotoren einer Windkraftanlage oder auch die Räder von Pkws. Im Test geht es um grundlegende Begriffe und Gesetze der Mechanik starrer Körper sowie um einige Anwendungen.

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Mechanik starrer Körper".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.
Lernhelfer (Duden Learnattack GmbH): "Wissenstest, Mechanik starrer Körper." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/wissenstest-mechanik-starrer-koerper (Abgerufen: 30. June 2025, 07:46 UTC)

Suche nach passenden Schlagwörtern

  • Winkelgeschwindigkeit
  • Translation
  • Winkel
  • Gleichgewicht
  • Schwerpunkt
  • Winkelbeschleunigung
  • Rotation
  • Trägheitsmoment
  • Rotationsenergie
  • Standfestigkeit
  • Drehmoment
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Gleichförmige Drehbewegung

Eine gleichförmige Drehbewegung liegt vor, wenn ein starrer Körper mit konstanter Winkelgeschwindigkeit rotiert. Beispiele dafür sind ein Riesenrad oder eine mit bestimmter Drehzahl rotierende Motorwelle. Die dafür geltenden Gesetze sind analog zu den Gesetzen für die gleichförmige Bewegung bei der Translation:
α = 0 ω = Δ ϕ Δ t ϕ = ω ⋅ t + ϕ 0

Gleichmäßig beschleunigte Drehbewegung

Eine gleichmäßig beschleunigte Drehbewegung liegt vor, wenn bei einem rotierenden starren Körper die Winkelbeschleunigung konstant und ungleich null ist. Beispiele dafür sind der Rotor eines gleichmäßig anlaufenden Elektromotors oder ein rotierendes Schwungrad, das gleichmäßig abgebremst wird. Für eine solche gleichmäßig beschleunigte Drehbewegung gelten die analogen Gesetze wie für eine gleichmäßig beschleunigte geradlinige Bewegung:
α =   konstant ω = α ⋅ t + ω 0 ϕ = 1 2 α ⋅ t 2 + ω 0 ⋅ t + ϕ 0

Rotationsenergie

Jeder bewegte Körper besitzt kinetische Energie (Bewegungsenergie). Das gilt auch für rotierende starre Körper, z.B. Schwungräder, die Rotoren von Generatoren und Motoren oder einen Kreisel.
Die in einem Körper gespeicherte Rotationsenergie hängt vom Trägheitsmoment dieses Körpers und von seiner Winkelgeschwindigkeit ab. Es gilt:

E r o t = 1 2 J ⋅ ω 2 J Trägheitsmoment ω Winkelgeschwindigkeit

Drehmoment und Drehmomentensatz

Bei Schraubenschlüsseln, Türklinken, Fahrrädern, Flaschenöffnern, Waagen oder Sportgeräten wirken Kräfte auf drehbare Körper. Das Drehmoment oder Kraftmoment ist die analoge Größe zur Kraft. Während die Kraft die Wirkung auf einen Körper beschreibt, der als Massepunkt angesehen werden kann und eine translatorische Bewegung ausführt, beschreibt das Drehmoment die Wirkung einer außerhalb der Drehachse angreifenden Kraft auf einen drehbar gelagerten starren Körper. Diese Wirkung kann durch solche Größen wie Drehwinkel, Winkelgeschwindigkeit und Winkelbeschleunigung beschrieben werden. Für das Drehmoment gilt:

M → = r → × F → und unter der Bedingung , dass die Kraft senkrecht am Hebel angreift , M = r ⋅ F .

Größen zur Beschreibung der Rotation

Die translatorische Bewegung eines Körpers kann mit den Größen Weg, Geschwindigkeit und Beschleunigung beschrieben werden. Analog dazu kann man die Bewegung eines rotierenden starren Körpers mit den Größen Drehwinkel, Winkelgeschwindigkeit und Winkelbeschleunigung beschreiben. Teilweise werden auch die Größen Umlaufzeit und Drehzahl mit genutzt. In der Dynamik kommen als weitere Größen das Drehmoment und das Trägheitsmoment hinzu.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025