Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 3 Thermodynamik
  4. 3.4 Hauptsätze der Thermodynamik
  5. 3.4.1 Der 1. Hauptsatz der Thermodynamik
  6. Isobare Zustandsänderungen

Isobare Zustandsänderungen

Bei einer isobaren Zustandsänderung eines Gases bleibt der Druck konstant. Die Zustandskurve im p-V-Diagramm ist eine Parallele zur V-Achse. Ein solcher Prozess kann realisiert werden, wenn dem Gas eine Wärme Q zugeführt wird. Damit dabei der Druck konstant bleibt, muss von dem Gas gleichzeitig Volumenarbeit verrichtet werden. Die zugeführte Wärme Q erzeugt bei einer isobaren Zustandsänderung eine Änderung der inneren Energie und des Volumens. Nach dem 1. Hauptsatz der Thermodynamik ergibt sich die Bilanz:

Q = Δ U − W

Bei Verwendung des Modells des idealen Gases erhöht die zugeführte Wärme Q die innere Energie U des Gases und verrichtet Volumenarbeit.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die Zustandsgleichung für Gase gibt die Beziehungen zwischen den thermischen Zustandsgrößen Druck, Temperatur und Volumen an. In vielen Fällen kann bei der Untersuchung thermodynamischer Prozesse zur Vereinfachung eine oder auch mehrere Zustandsgrößen als konstant angenommen werden.
Bei isobaren Zustandsänderungen eines Gases bleibt der Druck konstant.

Die Zustandskurve im p-V-Diagramm ist eine Parallele zur V-Achse (Bild 1). Ein solcher Prozess wird realisiert, wenn einem eingeschlossenen Gas eine Wärme Q von außen zugeführt wird und sich das Volumen so erhöht, dass der Druck konstant bleibt.
Die zugeführte Wärme Q erhöht die Temperatur des eingeschlossenen Gases und damit seine innere Energie U. Mit dem Ansteigen der Temperatur erhöht sich die kinetische Energie der Gasteilchen, was zu einem Druckanstieg führen würde. Um aber einen isobaren Prozess (p = konstant) zu realisieren, muss daher von dem Gas gleichzeitig Volumenarbeit verrichtet werden. Durch die Vergrößerung des Volumens wird der Druck konstant gehalten.

Quantitative Zusammenhänge

Bei konstantem Druck gilt für den Zusammenhang zwischen Volumen und Temperatur:
V T =   konstant oder V 1 T 1 = V 2 T 2
Die zugeführte Wärme Q erzeugt bei einer isobaren Zustandsänderung eine Änderung der inneren Energie und des Volumens. Nach dem 1. Hauptsatz der Thermodynamik ergibt sich die Bilanz:
Q = Δ U − W
Bei Verwendung des Modells ideales Gas kann die Volumenarbeit W, die das Gas zur Vergrößerung des Volumens um Δ V verrichtet, berechnet werden. Die Zustandsgleichung im Ausgangszustand ist:
p ⋅ V = N ⋅ k ⋅ T
Nach Zuführung der Wärme Q erhöht sich die Temperatur des Gases um Δ T und das Volumen um Δ V .
Die Zustandsgleichung im Endzustand nach Aufnahme der Wärme Q ist daher:
p ⋅ ( V + Δ V ) = N ⋅ k ⋅ ( T + Δ T )
Die vom Gas verrichtete Volumenarbeit ist damit:
W = −   p ⋅ Δ V = −   N ⋅ k ⋅ Δ T
In analoger Weise kann auch die Änderung der inneren Energie des idealen Gases berechnet werden (siehe dazu den Beitrag „Isochore Zustandsänderungen“). Bei einer Erhöhung der Temperatur um Δ T ist die Änderung der inneren Energie eines idealen Gases:
Δ U = 3 2   N ⋅ k ⋅ Δ T
Aus dem 1. Hauptsatzes kann damit die Wärme bestimmt werden, die für eine Temperaturerhöhung um Δ T des idealen Gases bei einer isobaren Prozessführung notwendig ist:
Q = 3 2   N ⋅ k ⋅ Δ T + N ⋅ k ⋅ Δ T = 5 2   N ⋅ k ⋅ Δ T
Die Teilchenanzahl N kann durch die Stoffmenge n und die universelle Gaskonstante R ersetzt werden. Aus
N = n ⋅ N A   und   R = N A ⋅ k
ergibt sich für die Wärme:
Q = 5 2   n ⋅ N A ⋅ k ⋅ Δ T = 5 2   n ⋅ R ⋅ Δ T Q = n ⋅ C m p ⋅ Δ T
Die Größe C mp , die molare Wärmekapazität bei konstantem Druck, ist für alle einatomigen Gase konstant. Sie hat einen Wert von:
C m p = 5 2   R = 20,8   kJ K ⋅ kmol

Für zweiatomige Gase müssen bei der Berechnung der molaren Wärmekapazität neben den Freiheitsgraden der Translation auch zwei Freiheitsgrade der Rotation berücksichtigt werden, da sich die kinetische Energie der Teilchen gleichmäßig auf alle Freiheitsgrade verteilt (Gleichverteilungssatz)
C m p = 7 2   R = 29,1   kJ K ⋅ kmol
Aus der molaren Wärmekapazität können auch theoretische Werte der spezifischen Wärmekapazitäten c p bei konstantem Druck einzelner Gase leicht bestimmt werden. Für das einatomige Helium ergibt sich z.B.:
c p = C m p M c p = 20,8     kJ ⋅ kmol 4   kg ⋅ K ⋅ kmol c p = 5,2   kJ K ⋅ kg

Diese theoretisch berechneten Werte, stimmen mit den experimentell ermittelten Werten gut überein.
Durch die Einführung der spezifischen Wärmekapazität können die molaren und die molekularen Größen ersetzt werden durch direkt messbare Größen. Für die Wärme, die für eine Temperaturerhöhung eines einatomigen Gases bei einer isobaren Prozessführung notwendig ist, ergibt sich mit der spezifischen Wärmekapazität bei konstantem Druck:

c p = C mp M   und der molaren Masse M = m n   die Gleichung für die Wärme: Q = n ⋅ C mp ⋅ Δ T = m ⋅ c p ⋅ Δ T n Stoffmenge in mol C mp molare Wärmekapazität eines einatomigen Gases Δ T Temperaturdifferenz m Masse c p spezifische Wärmekapazität bei konstantem Druck

Lernhelfer (Duden Learnattack GmbH): "Isobare Zustandsänderungen." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/isobare-zustandsaenderungen (Abgerufen: 20. May 2025, 05:54 UTC)

Suche nach passenden Schlagwörtern

  • isobare Zustandsänderungen
  • innere Energie
  • Berechnung
  • 1. Hauptsatz der Thermodynamik
  • Gleichverteilungssatz
  • spezifische Wärmekapazität bei konstantem Druck
  • Isobare
  • isobarer Prozess
  • Wärme
  • Volumenarbeit
  • Temperatur
  • Druck
  • Freiheitsgrad
  • molare Wärmekapazität
  • Simulation
  • p-V-Diagramm
  • Rechenbeispiel
  • ideales Gas
  • Volumen
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Zweiter Hauptsatz der Thermodynamik

Der zweite Hauptsatz der Thermodynamik, auch 2. Hauptsatz der Wärmelehre genannt, macht eine Aussage über die Richtung der Energieübertragung bei Vorgängen in Natur und Technik: Wärme geht niemals von selbst von einem Körper niederer Temperatur zu einem Körper höherer Temperatur über. Dieses Gesetz wurde von dem deutschen Physiker ROBERT CLAUSIUS (1822-1888) entdeckt. Für den zweiten Hauptsatz der Thermodynamik gibt es eine Reihe von gleichwertigen Formulierungen. In einer sehr kurzen Form lautet er:
Ein Perpetuum mobile 2. Art ist unmöglich.

Zustandsgleichung für das ideale Gas

Zwischen Druck p, Volumen V und absoluter Temperatur T des idealen Gases besteht folgender Zusammenhang:

p ⋅ V T = konstant oder p 1 ⋅ V 1 T 1 = p 2 ⋅ V 2 T 2

Für ein reales Gas ist die Zustandsgleichung anwendbar, wenn sich dieses näherungsweise wie das ideale Gas verhält. Das ist für fast alle Gase bei Zimmertemperatur der Fall.

Bezieht man die Gaskonstanten und andere Konstanten mit ein, so kann man die allgemeine Zustandsgleichung auch noch in weiteren Formen schreiben.

Isochore Zustandsänderungen

Bei einer isochoren Zustandsänderung eines Gases bleibt das Volumen konstant. Die Zustandskurve im p-V-Diagramm verläuft vertikal, parallel zur p-Achse. Ein solcher Prozess wird realisiert, wenn Gas in einem geschlossenen Behälter erwärmt wird. Die zugeführte Wärme führt zu einer Erhöhung der Temperatur und damit zu einer Änderung der inneren Energie U. Da das Volumen konstant bleibt, wird von dem Gas keine Arbeit verrichtet. Nach dem 1. Hauptsatz der Thermodynamik ist damit die zugeführte Wärme gleich der Änderung der inneren Energie des Gases:

Q = Δ U

Bei Verwendung des Modells ideales Gas erhöht die zugeführte Wärme die inneren Energie des Gases bei einem isochoren Prozess um:

Δ U = 3 2 N ⋅ k ⋅ Δ T N Anzahl der Teilchen k BOLTZMANN-Konstante Δ T Temperaturdifferenz

Daraus lässt sich die molare Wärmekapazität eines idealen Gases bei konstantem Volumen berechnen.

Wissenstest, Thermisches Verhalten von Körpern und Stoffen


Zum thermischen Verhalten von Körpern und Stoffen gehören die Längen- und Volumenänderung bei Temperaturänderung, die verschiedenen Aggregatzustandsänderungen sowie das Verhalten von Gasen, das unter Nutzung des Modells ideales Gas beschrieben wird. Im Test wird geprüft, inwieweit Grundkenntnisse über die genannten Inhalte vorhanden sind.

 

Hier kannst du dich selbst testen. So kannst du dich gezielt auf Prüfungen und Klausuren vorbereiten oder deine Lernerfolge kontrollieren.

Multiple-Choice-Test zum Thema "Physik - Thermisches Verhalten von Körpern und Stoffen".

Viel Spaß beim Beantworten der Fragen!

WISSENSTEST

Temperatur und Teilchenbewegung

Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen), die sich unterschiedlich schnell bewegen. Die Heftigkeit der Teilchenbewegung hängt vom Aggregatzustand und von der Temperatur ab. Dabei gilt:
Je höher die Temperatur eines Körpers ist, desto heftiger bewegen sich die Teilchen des Stoffes, aus dem der Körper besteht. Die quantitativen Zusammenhänge erhält man durch die Verknüpfung der Grundgleichung der kinetischen Gastheorie mit der Zustandsgleichung des idealen Gases. Zwischen der Temperatur des idealen Gases und seiner kinetischen Energie bzw. Geschwindigkeit bestehen folgende Zusammenhänge:

E ¯ k i n = 3 2   k ⋅ T oder 1 2 m ⋅ v 2 ¯ = 3 2   k ⋅ T

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025