Isotherme Zustandsänderungen

Zustandsänderungen von Gasen sind im allgemeinen komplizierte, komplexe Vorgänge. Zur Vereinfachung werden darum thermodynamische Prozesse oft in Teilprozesse zerlegt, bei denen eine oder auch mehrere Zustandsgrößen als konstant angenommen werden. Beispiele dafür sind die in Verbrennungsmotoren, Dampfmaschinen oder STIRLING-Motoren ablaufenden Kreisprozesse. Erst durch die Zerlegung in einzelne „Arbeitstakte“ lässt sich die Funktionsweise der Energiewandler mithilfe von thermodynamischen Gesetzen erklären. Von einer isothermen Zustandsänderung spricht man, wenn diese bei konstanter Temperatur vor sich geht. Im Allgemeinen ändern sich dann Druck und Volumen des Gases.

Isotherme Expansion und Kompression

Nach dem 1. Hauptsatz der Thermodynamik wird eine Änderung der inneren Energie Δ U eines Gases durch Zuführung einer Wärme Q oder durch Verrichten von äußerer Arbeit W erreicht.

Δ U = Q + W

Bei isothermen Zustandsänderungen bleibt die Temperatur des Gases konstant, d.h. die innere Energie des Gases ändert sich nicht.

Das lässt sich durch folgende Prozesse realisieren:

 
  • Dem Gas wird eine Wärme Q zugeführt, es dehnt sich aus und verrichtet die Volumenarbeit -W. Es liegt eine isotherme Expansion vor (Bild 1), für die gilt:
Q = W
 
  • An dem Gas wird die äußere Arbeit W verrichtet, das Volumen wird kleiner und die dabei entstehende Wärme -Q wird abgegeben. Es liegt eine isotherme Kompression vor (Bild 2), für die gilt:
W = Q

Berechnung der Volumenarbeit

Die bei einer isothermen Expansion vom Gas verrichtete Arbeit (Volumenarbeit) kann berechnet werden mit der Gleichung:

W = V 1 V 2 p d V p Druck V Volumen


Sie entspricht der Fläche unterhalb des Graphen (Isotherme) im p-V-Diagramm (Bild 1). Sie ist umso größer, je höher die Temperatur ist und je größer die Volumenänderung Δ V = V 2 V 1 ist.
Die bei der isothermen Kompression von V 2 auf V 1 bei gleicher Temperatur aufzuwendende Arbeit ist betragsmäßig genau so groß wie die verrichtete Arbeit bei der isothermen Expansion.

Bei Verwendung des Modells ideales Gas kann die Volumenarbeit bei isothermer Expansion folgendermaßen ermittelt werden:

Die Zustandsgleichung des idealen Gases

p = N k T V

reduziert sich für isotherme Prozesse auf p V = konstant
und damit die Beziehung zwischen dem Anfangs- und dem Endzustand der Zustandsänderung auf p 1 V 1 = p 2 V 2 .

Für die Untersuchung der Druck- und Volumenänderung eines Gases bei Zuführung von Wärme sind diese Annahmen für viele praktische Prozesse durchaus gerechtfertigt.
Nach Einsetzen der Zustandsgleichung p = N k T V in die Gleichung für die Volumenarbeit W = V 1 V 2 p ( V ) d V ergibt sich die vom Gas geleistete Volumenarbeit bei isothermer Expansion durch Integration:
W = V 1 V 2 N k T V d V W = N k T V 1 V 2 d V V W = N k T ln V 2 V 1 N Teilchenanzahl k BOLTZMANN-Konstante T absolute Temperatur V Volumen


Wird die Zustandsgleichung des idealen Gases benutzt, so kann die Volumenarbeit auch in der Form

W = p 1 V 1 ln V 2 V 1

geschrieben werden. Durch die Einführung der Masse m des Gases und der spezifischen Gaskonstanten Bild kann mithilfe der Beziehungen

N = n N A , R = N A k und R = n m R S

die Volumenarbeit bei isothermer Expansion umgeformt werden in:

W = m R s T ln V 2 V 1 m Masse des Gases R s spezifische Gaskonstante T absolute Temperatur V 1 , V 2 Volumen

Diese Arbeit ist gleich der dem Gas zugeführten Wärme, die dieses benötigt, um seine innere Energie bei der Expansion konstant zu halten.

Stand: 2010
Dieser Text befindet sich in redaktioneller Bearbeitung.

Lexikon Share
Physik Note verbessern?
 

Kostenlos bei Duden Learnattack registrieren und ALLES 48 Stunden testen.

Kein Vertrag. Keine Kosten.

  • 40.000 Lern-Inhalte in Mathe, Deutsch und 7 weiteren Fächern
  • Hausaufgabenhilfe per WhatsApp
  • Original Klassenarbeiten mit Lösungen
  • Deine eigene Lern-Statistik
  • Kostenfreie Basismitgliedschaft

Einloggen