Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 4 Elektrizitätslehre und Magnetismus
  4. 4.2 Das magnetische Feld
  5. 4.2.1 Magnetische Felder von Dauer- und Elektromagneten
  6. Physikalische Felder im Vergleich

Physikalische Felder im Vergleich

Elektrische Felder, magnetische Felder und Gravitationsfelder sind dadurch gekennzeichnet, dass auf Körper mit bestimmten Eigenschaften, die sich in ihnen befinden, Kräfte ausgeübt werden. Alle drei Arten von Feldern lassen sich mithilfe des Modells Feldlinienbild beschreiben. Für jedes der Felder gibt es feldbeschreibende Größen, die teilweise in analoger Weise definiert sind. Darüber hinaus gibt es zwischen diesen drei Arten von Feldern weitere Gemeinsamkeiten, aber auch deutliche Unterschiede.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Sie sind neben den Stoffen eine Form der Materie. Bei diesen drei Arten von Feldern gibt es viele Gemeinsamkeiten, aber auch deutliche Unterschiede. Sie werden in den nachfolgenden Übersichten deutlich gemacht. Wir beschränken uns dabei auf konstante elektrische Felder (elektrostatische Felder), konstante Magnetfelder (magnetostatische Felder) und Gravitationsfelder.

Allgemein gilt für alle drei Arten von Feldern:

  • Die Felder bewegen sich mit den Körpern, von denen sie ausgehen oder zwischen denen sie bestehen. Bewegen sich diese Körper beschleunigt, dann liegt allerdings kein statisches Feld mehr vor.
  • Änderungen im Feld breiten sich immer mit Lichtgeschwindigkeit aus.
  • Feldern kann eine Energie und damit auch eine Masse zugeordnet werden. Sie besitzen aber keine Ruhemasse.
  • Felder einer Art überlagern sich. Es gilt für sie das Superpositionsprinzip. Die Wirkung auf einen Körper ergibt sich als Resultierende aus der Wirkung der verschiedenen Felder einer Art. So kann z.B. auf einen Satelliten das Gravitationsfeld der Erde und des Mondes wirken. Aus den Einzelwirkungen ergibt sich eine resultierende Wirkung (Resultierende der Gravitationskräfte).
  • Felder unterschiedlicher Art durchdringen sich ungestört. An einer bestimmten Stelle des Raumes kann also sowohl ein elektrisches als auch ein magnetisches und ein Gravitationsfeld existieren.
  • Körper werden von Feldern durchdrungen. Elektrische und magnetische Felder werden aber durch bestimmte Stoffe abgeschirmt.

In der nachfolgenden Übersicht sind einige charakteristische Merkmale der drei Arten von Feldern dargestellt.

Bild

Eine quantitative Beschreibung von Feldern kann mithilfe von Feldgrößen erfolgen. Die wichtigsten Größen sind nachfolgend zusammengestellt. Dabei werden auch Ähnlichkeiten in den mathematischen Strukturen deutlich.

Bild

Lernhelfer (Duden Learnattack GmbH): "Physikalische Felder im Vergleich." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/physikalische-felder-im-vergleich (Abgerufen: 30. June 2025, 05:40 UTC)

Suche nach passenden Schlagwörtern

  • Radialfeld
  • Potential (neue Rechtschreibung: Potenzial)
  • magnetostatisches Feld
  • elektrisches Feld
  • Gravitationsfeld
  • Potenzial
  • Gravitationsfeldstärke
  • Feldkonstante
  • Feldlinienbilder
  • elektrische Feldstärke
  • Magnetisches Feld
  • elektrostatisches Feld
  • magnetische Flussdichte
  • Feldenergie
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Magnetspeicher

Zur Speicherung von Informationen gibt es unterschiedliche Möglichkeiten. Während man bei CDs und DVDs die thermische Verformung feinster Bereiche auf einer Disc („Brennen einer CD oder einer DVD“) nutzt, wendet man bei Festplatten, Disketten unterschiedlicher Bauart, Tonbändern und Videobändern die magnetische Speicherung an. Bei Magnetspeichern wird eine dünne magnetische Schicht durch einen Schreibkopf entsprechend der einzuprägenden Informationen magnetisiert. Durch einen Lesekopf können diese Informationen wieder abgerufen werden.

Stoffe im Magnetfeld

Alle Stoffe werden durch magnetische Felder beeinflusst. Umgekehrt gilt auch: Alle Stoffe beeinflussen magnetische Felder. Diese Beeinflussung ist aber sehr unterschiedlich. Während sogenannte diamagnetische Stoffe (z.B. Wasser, Gold, Glas) und paramagnetische Stoffe (z.B. Aluminium, Platin, Luft) kaum zu einer Veränderung magnetischer Felder führen, bewirken ferromagnetische Stoffe (z.B. Eisen, Cobalt, Nickel) eine zum Teil erhebliche Verstärkung und Bündelung eines Magnetfeldes. Darüber hinaus lassen sich ferromagnetische Stoffe selbst magnetisieren. Dabei wird zwischen magnetisch weichen und magnetische harten Stoffen differenziert. Diese Unterscheidung ist vor allem im Hinblick auf Anwendungen von großer Bedeutung.

Arbeit und Energie im elektrischen Feld

Befinden sich elektrisch geladene Körper oder Teilchen im elektrischen Feld und sind sie frei beweglich, so wirkt auf sie eine Feldkraft, die Arbeit an diesen Körpern bzw. Teilchen verrichtet. Will man umgekehrt geladene Körper oder Teilchen im Feld bewegen, so muss Arbeit verrichtet werden, wenn die Bewegung entgegen der Feldkraft erfolgen soll. Die erforderliche Feldkraft kann bei einfachen Feldformen berechnet werden.
Wird an geladenen Körpern oder Teilchen mechanische Arbeit verrichtet, so ändert sich ihre Energie. Dabei gilt für den Zusammenhang zwischen Arbeit und Energie der allgemeine Zusammenhang W = Δ E .

Blitze und Blitzschutzanlagen

Blitze sind elektrische Entladungen zwischen Wolken bzw. zwischen einer Wolke und der Erdoberfläche. Die mittlere Stromstärke beträgt ca. 40.000 A bei einem Durchmesser der Blitze von 10 bis 20 cm, ihre Länge meist 2 bis 3 km und ihre Dauer weniger als 1 s. Weltweit werden 70 bis 100 Blitze in jeder Sekunde registriert.
Blitze können erhebliche Schäden hervorrufen. Um sich vor solchen Schäden zu schützen, werden in gefährdeten Gebieten an Gebäuden Blitzschutzanlagen angebracht. Vor Blitzen geschützt ist auch ein von Metall umgebener Raum, etwa eine Pkw-Karosserie. Sie wirkt wie ein FARADAY-Käfig. Elektronische Geräte oder Kabel werden durch eine metallische Ummantelung vor starken elektrischen Feldern abgeschirmt.

Charles Augustin de Coulomb

* 14.06.1736 in Angouleme (Südfrankreich)
† 23.08.1806 in Paris

COULOMB war französischer Physiker, der sich große Verdienste um die Entwicklung der Elektrizitätslehre erworben hat. Er entdeckte u.a. das coulombsche Gesetz, das eine quantitative Aussage über die Kraftwirkung auf geladene Körper im elektrischen Feld gestattet. Damit und mit anderen Untersuchungen führte maßgeblich quantitative Betrachtungen in die Elektrizitätslehre ein und knüpfte damit an NEWTONs Vorgehen an.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025