Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 6 Atom- und Kernphysik
  4. 6.2 Kernumwandlungen und Radioaktivität
  5. 6.2.3 Radioaktive Strahlung
  6. Äquivalentdosis

Äquivalentdosis

Die biologische Wirkung radioaktiver Strahlung wird durch die physikalische Größe Äquivalentdosis erfasst. Die Äquivalentdosis kennzeichnet die von einem Körper aufgenommene Energiedosis unter Berücksichtigung biologischer Wirkungen.

Formelzeichen:
Einheit:
D q
ein Sievert (1 Sv)

Benannt ist die Einheit der Äquivalentdosis nach dem schwedischen Strahlenforscher ROLF SIEVERT (1898-1966).

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die physikalische Größe Äquivalentdosis

Radioaktive Strahlung kann verschiedene biologische Wirkungen haben, insbesondere Zellen beeinflussen. Dabei hängt die biologische Wirkung radioaktiver Strahlung auf einen Körper davon ab,

  • wie viel Strahlung ein Körper aufnimmt,
  • welche Art der Strahlung aufgenommen wird,
  • welche Körperteile bzw. Organe bestrahlt werden.

Die biologischen Wirkungen radioaktiver Strahlung werden durch die physikalische Größe Äquivalentdosis erfasst.

Die Äquivalentdosis kennzeichnet die von einem Körper aufgenommene Energiedosis unter Berücksichtigung biologischer Wirkungen.

Formelzeichen:
Einheit:
D q
ein Sievert (1 Sv)

Benannt ist die Einheit der Äquivalentdosis nach dem schwedischen Strahlenforscher ROLF SIEVERT (1898-1966). Früher wurde als Einheit das Rem (1 rem) verwendet (rem = röntgen equivalent man). Es gilt:



Für die Einheit 1 Sv gilt:
1 rem = 0,01 Sv

Sv = 1 J/kg

Berechnung der Äquivalentdosis

Die Äquivalentdosis kann mit der folgenden Gleichung berechnet werden:

D q = D ⋅ q                    D      Energiedosis (vom Körper                           aufgenommene Strahlungsenergie)                    q      Qualitätsfaktor

Der Qualitätsfaktor ist ein aus Experimenten gewonnener Erfahrungswert und hängt von der Art der Strahlung ab. In der nachfolgenden Übersicht ist der Qualitätsfaktor für verschiedene Arten von Strahlung angegeben.

Art der Strahlung Qualitätsfaktor q
Betastrahlung
Gammastrahlung
Röntgenstrahlung


1
Langsame Neutronen 2,3
Schnelle Neutronen 10
Alphastrahlung 20

Nach gegenwärtigen Erkenntnisse treten bei Menschen bereits bei kurzzeitiger Strahlenbelastung ab 250 mSv Schäden auf. Eine Bestrahlung mit 5 000 mSv ist tödlich. Für Menschen, die beruflich Strahlung ausgesetzt sind (z.B. in der Medizin, in der Forschung, in Kernkraftwerken), gilt zur Zeit ein Grenzwert von 50 mSv pro Jahr. Die Strahlenbelastung solcher Personen wird ständig kontrolliert. Die durchschnittliche Strahlenbelastung von Personen, die nicht beruflich mit Strahlung zu tun haben, liegt in Deutschland bei etwa 4 mSv im Jahr.

Die effektive Äquivalentdosis

Bei Bestrahlung des Menschen, die von außen oder auch von innen durch aufgenommene radioaktive Stoffe erfolgen kann, werden Organe und Gewebe unterschiedlich belastet, da ihre Strahlenempfindlichkeit unterschiedlich ist. Man hat deshalb für die Berechnung des tatsächlichen Strahlenrisikos für Organe und Gewebe Wichtungsfaktoren festgelegt und kann mit ihrer Hilfe die effektive Äquivalentdosis für ein Organ oder ein bestimmtes Gewebe berechnen. Sie ist das Produkt aus der Äquivalentdosis und dem entsprechenden Wichtungsfaktor (Bild 3).

Beispiel:
Durch Aufnahme von Iod-131 mit der Nahrung ist die Schilddrüse einer Person mit einer Äquivalentdosis von 100 mSv belastet worden. Dann erhält man als effektive Äquivalentdosis:

D q ,effektiv = 100  mSv  ⋅  0 ,03 = 3 mSv

Würde man den ganzen Körper mit 3 mSv bestrahlen, so ergäbe sich das gleiche Schadensrisiko.

  • Wichtungsfaktoren zur Berechnung der effektiven Äquivalentdosis
Lernhelfer (Duden Learnattack GmbH): "Äquivalentdosis." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik/artikel/aequivalentdosis (Abgerufen: 18. November 2025, 12:24 UTC)

Suche nach passenden Schlagwörtern

  • Äquivalentdosis
  • Qualitätsfaktor
  • Biologische Wirkungen
  • Effektive Äquivalentdosis
  • Radioaktive Strahlung
  • Rolf Sievert
  • Energiedosis
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Hans Geiger

* 30.09.1882 in Neustadt/Weinstraße
† 24.09.1945 in Potsdam

Er war ein deutscher Physiker und zunächst als Mitarbeiter von RUTHERFORD, später als Professor in Kiel, Tübingen und Berlin tätig. GEIGER entwickelte das nach ihm und seinem Schüler MÜLLER benannte Zählrohr (Geiger-Müller-Zählrohr) für radioaktive Strahlung.

Kernumwandlungen

Unter einer Kernumwandlung versteht man die Umwandlung von Atomkernen in andere Kerne. Das kann spontan oder durch äußere Einflüsse und Bedingungen erfolgen. Zu den Kernumwandlungen gehören der Spontanzerfall, die Kernspaltung und die Kernfusion. Darüber hinaus gibt es eine Vielzahl weiterer Kernumwandlungen, die meist infolge äußerer Einflüsse vor sich gehen.

Louis Harold Gray

* 10.11.1905 in London
† 09.07.1965 in Northwood

Er war ein englischer Physiker, der sich besondere Verdienste um die Untersuchung der Wirksamkeit radioaktiver Strahlung auf menschliches Gewebe erworben hat. GRAY gehört zu den Mitbegründern der Radiologie. Ihm zu Ehren wurde 1975 als Einheit für die Energiedosis von radioaktiver Strahlung das Gray (Kurzzeichen: gy) festgelegt.

Nachweismethoden für radioaktive Strahlung

Radioaktive Strahlung lässt sich nicht mit unseren Sinnesorganen erfassen. Um sie nachzuweisen, müssen ihre Wirkungen genutzt werden. Wichtige Nachweismöglichkeiten sind

  • fotografische Schichten,
  • Zählrohre,
  • Nebelkammern.

Darüber hinaus gibt es weitere Nachweismöglichkeiten, z.B. Szintillationszähler, Blasenkammern, Ionisationskammern, Spinthariskope oder Detektoren unterschiedlicher Bauart.

Nuklide und Isotope

Ein Nuklid ist ein Atomkern, der eindeutig durch Massenzahl und Kernladungszahl charakterisiert ist. Der Begriff wurde 1950 international eingeführt, um dem unkorrekten Gebrauch des Wortes Isotop entgegenzuwirken. Isotope sind Atomkerne eines Elements mit gleicher Protonenzahl, aber unterschiedlicher Anzahl von Neutronen. Es sind spezielle Nuklide. Wegen der gleichen Protonenzahl (= Kernladungszahl) haben Isotope auch die gleiche Anzahl von Elektronen in der Hülle.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025