Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.3 Elektrische und magnetische Felder
  5. 4.3.1 Das elektrische Feld
  6. Elektrische Kapazität

Elektrische Kapazität

Ein Kondensator kann elektrische Ladungen nicht unbegrenzt speichern, sondern bei vorgegebener Spannung auf seinen Kondensatorplatten stets nur eine gewisse Anzahl von Ladungsträgern aufnehmen. Die elektrische Kapazität kennzeichnet die Fähigkeit eines Kondensators, Ladungen zu speichern.
 

Formelzeichen:C
Einheit:ein Farad (1 F = 1 As/V)

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Ein Kondensator kann elektrische Ladungen nicht unbegrenzt speichern, sondern bei vorgegebener Spannung auf seinen Kondensatorplatten stets nur eine gewisse Anzahl von Ladungsträgern aufnehmen. Die elektrische Kapazität kennzeichnet die Fähigkeit eines Kondensators, Ladungen zu speichern.

Formelzeichen:C
Einheit:ein Farad (1 F = 1 As/V)

Die Zahlenwerte für technisch genutzte Kondensatoren sind im Allgemeinen recht klein und liegen in der Größenordnung Nanofarad (nF), Mikrofarad (μF) oder höchstens Millifarad (mF).

Die Berechnung der Kapazität

Für Berechnungen von Kondensatorkapazitäten stehen verschiedene Möglichkeiten zur Wahl. Kennt man die auf den Platten gespeicherte Ladung und die Spannung zwischen den Kondensatorplatten, dann verwendet man die Definitionsgleichung der Kapazität.
Die Definitionsgleichung der elektrischen Kapazität lautet:

C = Q U

Die Kapazität eines Kondensators ist der Quotient aus der Ladung Q, die auf den Kondensatorplatten gespeichert ist und der Spannung U zwischen den Platten.

In der Elektrotechnik ist es erforderlich, die Kapazität eines Plattenkondensators aufgrund seiner konstruktiven Merkmale vorauszubestimmen, ohne Ladungs- und Spannungsmessungen an ihm vorgenommen zu haben. Dieses Problem löst man mithilfe der Gleichung:

C = ε 0 ⋅ ε r ⋅ A d

( ε 0 : elektrische Feldkonstante, ε r : Dielektrizitätskonstante, A: Fläche einer Kondensatorplatte, d: Abstand zwischen den Kondensatorplatten)

Anhand dieser Gleichung erkennt man eine wichtige Möglichkeit zur Kapazitätssteigerung von Kondensatoren. Man füllt den Raum zwischen den Kondensatorplatten mit einem Stoff, der eine möglichst hohe Dielektrizitätskonstante besitzt. Auf diese Weise kann man Kondensatoren mit höherer Kapazität bei technisch vertretbaren Abmessungen konstruieren. Je nach Kondensatortyp existieren weitere Berechnungsgleichungen für die Kapazität, z.B. für die häufig genutzten Kugelkondensatoren.

Lernhelfer (Duden Learnattack GmbH): "Elektrische Kapazität." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik/artikel/elektrische-kapazitaet (Abgerufen: 19. August 2025, 08:28 UTC)

Suche nach passenden Schlagwörtern

  • Spannung
  • Kapazitätssteigerung
  • Kondensator
  • Elektrische Ladung
  • Kapazitätsberechnungen
  • elektrische Kapazität
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Elektrisches Potenzial und elektrische Spannung

Ähnlich wie beim Gravitationsfeld wird auch beim elektrischen Feld ein Potenzial definiert. Unter dem elektrischen Potenzial eines Punktes versteht man den Quotienten aus der potenziellen Energie in diesem Punkt und der Ladung des Körpers. Sein Betrag hängt nur vom Ort und von der felderzeugenden Ladung ab. Das Potenzial ist demzufolge geeignet, ein Feld zu beschreiben. Das kann auch grafisch mit Äquipotenziallinien in der Ebene oder Äquipotenzialflächen im Raum erfolgen.
Die elektrische Spannung zwischen zwei beliebigen Punkten eines elektrischen Feldes ist gleich der Potenzialdifferenz zwischen diesen beiden Punkten.

Elektrische Leistung

Die elektrische Leistung gibt an, wie viel elektrische Arbeit der elektrische Strom in jeder Sekunde verrichtet bzw. wie viel elektrische Energie in andere Energieformen umgewandelt wird.

Formelzeichen:
Einheit:
P
ein Watt ( 1 W)

Benannt ist die Einheit der Leistung nach dem schottischen Techniker JAMES WATT.

Michael Faraday

* 22.09.1791 in Newington-Butts
† 25.08.1867 in Hampton Court bei London

FARADAY war ein englischer Chemiker und Physiker. Er war viele Jahre Mitglied der „Royal Society“. Bedeutende Entdeckungen machte er auf verschiedenen Gebieten der Elektrizitätslehre und der Chemie. Er entdeckte u.a. die elektromagnetische Induktion, baute Urformen eines Elektromotors und eines Generators, entdeckte Gesetze der Elektrolyse und des Magnetismus. Er führte viele physikalische und chemische Fachbegriffe und das Feldliniemodell in die Wissenschaft ein.

Feldstärke und dielektrische Verschiebung

Elektrische Felder können mithilfe von Feldlinienbildern beschrieben werden. Zur ihrer quantitativen Beschreibung nutzt man die feldbeschreibenden Größen elektrische Feldstärke und dielektrische Verschiebung. Die elektrische Feldstärke E ist definiert als Quotient aus der Kraft F, die das Feld auf einen positiv geladenen Probekörper ausübt, und dessen Ladung Q:
E → = F → Q
Die dielektrische Verschiebung D (Verschiebungsdichte) ist ein Maß für die auf einer Fläche im elektrischen Feld durch Influenz hervorgerufenen Ladung:
D = Q A
Beide Größen sind durch die elektrische Feldkonstante und die Permittivitätszahl miteinander verbunden:
D → = ε 0 ⋅ ε r ⋅ E →
Bevorzugt wird mit der elektrischen Feldstärke gearbeitet.

Spannungen in Stromkreisen

Die elektrische Spannung gibt an, wie stark der Antrieb des elektrischen Stromes ist. Sie wird in der Einheit Volt gemessen.
Befinden sich in einem Stromkreis mit einer elektrischen Quelle mehrere Bauelemente (Widerstände, Glühlampen, Spulen, ...), so können diese in Reihe oder parallel zueinander geschaltet sein. Die Spannung, die an den einzelnen Bauelementen anliegt, hängt von der Art der Schaltung und vom elektrischen Widerstand des betreffenden Bauelements ab.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025