Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik Abitur
  3. 4 Elektrizitätslehre und Magnetismus
  4. 4.4 Gleichstromkreis und Wechselstromkreis
  5. 4.4.0 Gleichstromkreis und Wechselstromkreis
  6. Elektrische Arbeit

Elektrische Arbeit

Die elektrische Arbeit gibt an, wie viel elektrische Energie in andere Energieformen umgewandelt wird.

Formelzeichen:
Einheit:
W
1 W ⋅ s

Elektrische Arbeit muss man verrichten, um einen geladenen Körper in einem elektrischen Feld zu verschieben.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Die Arbeit zur Bewegung eines solchen Körpers, ist gleich dem Produkt aus seiner Ladung und der Spannung zwischen dem Ausgangs- und dem Endpunkt:

W = Q ⋅ U

Die am geladenen Körper verrichtete Arbeit ist gleich der Änderung seiner Energie. Für Berechnungen in einem Stromkreis verwendet man eine andere Gleichung. Die Arbeit im elektrischen Stromkreis ist gleich dem Produkt aus Leistung und Zeit, während der die elektrische Leistung aufgewandt wird:

W = P ⋅ t

Beide Gleichungen lassen sich ineinander überführen, den P = U ⋅ I und I ⋅ t ist für I = konstant gleich der Ladung Q .
Allgemein gilt: Wendet man eine Kraft F auf, um einen Körper entlang des Weges s zu bewegen, so verrichtet man an diesem Körper Arbeit. Zwei ungleichnamig geladene Körper ziehen sich gegenseitig an. Will man sie auseinanderbringen, so muss man eine Kraft aufbringen, um einen dieser Körper im elektrischen Feld des anderen Körpers zu verschieben. Bei dieser Verschiebung verrichtet man elektrische Arbeit.

  • Arbeit im elektrischen Feld

Die elektrische Arbeit in einem Plattenkondensator

In einigen Fällen ist die Gleichung für die elektrische Arbeit besonders einfach herzuleiten. Dies ist möglich, wenn die Kraft und der Verschiebungsweg gleich gerichtet sind. Außerdem ist erforderlich, dass die elektrische Feldstärke auf dem gesamten Weg konstant und damit die Kraft ebenfalls konstant ist. Diese Bedingungen sind innerhalb eines Plattenkondensators sehr gut erfüllt. Es soll die elektrische Arbeit berechnet werden, die zu verrichten ist, um einen geladenen Probekörper zwischen zwei Platten eines Plattenkondensators, deren Abstand d beträgt, zu verschieben. Unter den genannten Voraussetzungen gilt für diese Arbeit:

W = F ⋅ s

Die Kraft auf einen Probekörper innerhalb eines Plattenkondensator ist das Produkt aus seiner elektrischen Ladung und der elektrischen Feldstärke im Kondensator:

F = Q ⋅ E

Daraus ergibt sich für die elektrische Arbeit:

W = Q ⋅ E ⋅ d

Für die elektrische Feldstärke E zwischen den Kondensatorplatten gilt:

E = U d (U Spannung zwischen den Platten).

Ersetzt man mithilfe dieser Gleichung die elektrische Feldstärke E in der Berechnungsformel für die elektrische Arbeit, so ergibt sich insgesamt:

W = Q ⋅ U

Die elektrische Arbeit in einem stromdurchflossenen Leiter

Man darf sich ein gerades Leiterstück wie einen Plattenkondensator mit winzigen Plattenflächen vorstellen. Da an einen Leitungsdraht eine elektrische Spannung angelegt wird und im Leiter elektrische Ladungen fließen - also „verschoben“ werden - verrichtet die Spannungsquelle eine elektrische Arbeit an den Ladungsträgern. Diese Arbeit ist z.B. erforderlich, um den Leitungswiderstand zu überwinden. Da man in einem stromführenden Leiter nicht alle Ladungsträger einzeln „abzählen“ kann, formt man für Arbeitsberechnungen in Stromkreisen die anhand des Plattenkondensators gewonnene Gleichung um.
Die durch ein Leiterstück fließende Gesamtladung ist das Produkt aus Stromstärke I und Zeit:

Q = I ⋅ t

Für die elektrische Arbeit gilt dann:

W = Q ⋅ U = I ⋅ t ⋅ U = P ⋅ t

Die elektrische Arbeit ist das Produkt aus elektrischer Leistung und Zeit. Diese Gleichung gilt unter der Voraussetzung, dass die im Stromkreis umgesetzte Leistung konstant ist.

Hinweis für Berechnungen der elektrischen Arbeit

Auf elektrischen Bauteilen sind im Regelfall entweder die Leistung oder Spannung und Stromstärke angegeben. So ist beispielsweise jede Glühlampe mit einer Leistungsangabe versehen. Möchte man die elektrische Arbeit einer Glühlampe berechnen, dann muss man diese Leistungsangabe nur noch mit ihrer Betriebsdauer multiplizieren. Eine 100 W-Lampe, die 12 Stunden in Betrieb war, hat demzufolge eine elektrische Arbeit von:

W     =     P ⋅ t     =     100     W ⋅ 12     h     =     1200     W ⋅ h     =     1,2     kW ⋅ h

verrichtet.

  • BWS-PHY2-0520-07.mcd (10.04 KB)
Lernhelfer (Duden Learnattack GmbH): "Elektrische Arbeit ." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/elektrische-arbeit (Abgerufen: 19. May 2025, 20:46 UTC)

Suche nach passenden Schlagwörtern

  • elektrisches Feld
  • Plattenkondensator
  • Elektrische Arbeit
  • Berechnung
  • Stromkreis
  • Kraft
  • elektrische Leistung
  • stromdurchflossener Leiter
  • elektrische Feldstärke
  • Verschiebungsweg
  • Rechenbeispiel
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Spannungen in Stromkreisen

Die elektrische Spannung gibt an, wie stark der Antrieb des elektrischen Stromes ist. Sie wird in der Einheit Volt gemessen.
Befinden sich in einem Stromkreis mit einer elektrischen Quelle mehrere Bauelemente (Widerstände, Glühlampen, Spulen, ...), so können diese in Reihe oder parallel zueinander geschaltet sein. Die Spannung, die an den einzelnen Bauelementen anliegt, hängt von der Art der Schaltung und vom elektrischen Widerstand des betreffenden Bauelements ab.

Stromstärken in Stromkreisen

Die elektrische Stromstärke gibt an, wie viel elektrische Ladung sich in jeder Sekunde durch den Querschnitt eines elektrischen Leiters bewegt. Sie wird in der Einheit Ampere (1 A) gemessen.
Befinden sich in einem Stromkreis mit einer elektrischen Quelle mehrere Bauelemente (Widerstände, Glühlampen, Spulen, ...), so können diese in Reihe oder parallel zueinander geschaltet sein. Die Stromstärke, die durch das einzelne Bauelement fließt, hängt von der Art der Schaltung und vom elektrischen Widerstand des betreffenden Bauelements ab.

Widerstände in Stromkreisen

Der elektrische Widerstand eines Bauelementes oder Gerätes gibt an, welche Spannung für einen elektrischen Strom der Stärke 1 A erforderlich ist. Er wird in der Einheit Ohm ( 1 Ω ) gemessen.
Befinden sich in einem Stromkreis mit einer elektrischen Quelle mehrere Bauelemente (Widerstände, Glühlampen, Spulen, ...), so können diese in Reihe oder parallel zueinander geschaltet sein. Der Gesamtwiderstand der Schaltung hängt von der Art der Schaltung und vom elektrischen Widerstand der betreffenden Bauelemente ab.

Elektrischer Widerstand

Der elektrische Widerstand eines Bauteils gibt an, wie stark der elektrische Strom in ihm behindert wird.

Formelzeichen:
Einheit:
R
ein Ohm (1 Ω )

Definiert ist der elektrische Widerstand als der Quotient aus elektrischer Spannung und elektrischer Stromstärke:

R = U I U Spannung am Bauteil I Stromstärke durch das Bauteil

Diese Gleichung wird auch als ohmsches Gesetz bezeichnet.

Georg Simon Ohm

* 16.03.1789 in Erlangen
† 06.07.1854 in München

Er war deutscher Mathematiker und Physiker, arbeitete als Lehrer für Mathematik und Physik und in seinen letzten Lebensjahren als Professor an der Universität München. Seine wichtigste Entdeckung war ein Gesetz der Elektrizitätslehre zum Zusammenhang zwischen Spannung und Stromstärke, das wir heute als ohmsches Gesetz kennen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025