Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.3 Elektrische und magnetische Felder
  5. 4.3.2 Das magnetische Feld
  6. Magnetische Feldlinien

Magnetische Feldlinien

Wie beim elektrischen Feld kann man sich auch das magnetische Feld mithilfe des Feldlinienmodells veranschaulichen. Umgibt man einen Magneten mit einer Vielzahl von Magnetnadeln, dann kann man anhand der Orientierung der Nadeln den Verlauf der magnetischen Feldlinien erkennen. Magnetische Feldlinien haben mit elektrischen Feldlinien eine Reihe von gemeinsamen Eigenschaften, unterscheiden sich von ihnen aber auch in wesentlichen Merkmalen.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Wie beim elektrischen Feld kann man sich auch das magnetische Feld mithilfe des Feldlinienmodells veranschaulichen.

Umgibt man einen Magneten mit einer Vielzahl von Magnetnadeln, dann kann man anhand der Orientierung der Nadeln den Verlauf der magnetischen Feldlinien erkennen. Magnetische Feldlinien haben mit elektrischen Feldlinien eine Reihe von gemeinsamen Eigenschaften, unterscheiden sich von ihnen aber auch in wesentlichen Merkmalen.

  • Feldlinienbild um einen Dauermagneten: Kleine Magnetnadeln richten sich in Richtung des Feldes aus.

Für magnetische Feldlinien gilt:

  1. Die Richtung, in der die Feldlinien verlaufen, bestimmt man mit einer Magnetnadel.
  2. Magnetische Feldlinien schneiden sich nicht.
  3. Eine hohe Feldliniendichte charakterisiert ein starkes magnetisches Feld und damit eine große magnetische Feldstärke.
  4. Für die Orientierung der Feldlinien wurde festgelegt: Am Nordpol eines Magneten treten die Feldlinien aus. Am Südpol eines Magneten treten sie in seine Oberfläche ein.
  • Feldlinienbild eines Dauermagenten

Unterschiede zwischen magnetischen und elektrischen Feldlinien

Elektrische Feldlinien

  • gehen von einem geladenen Körper aus und verlaufen entweder ohne Begrenzung in den Raum hinaus oder beginnen in einem positiv geladenen Körper und enden auf einem negativ geladenen Körper,
  • elektrische Feldlinien sind nicht geschlossen.

Magnetische Feldlinien

  • sind bei Magneten vom magnetischen Nordpol hin zum magnetischen Südpols gerichtet und setzten sich im felderzeugenden Körper fort.
  • Die Feldlinien haben für gewöhnlich keinen Anfang und kein Ende, sie sind i. A. geschlossen.
  • Feldlinienbild um eine stromdurchflossene Spule
Lernhelfer (Duden Learnattack GmbH): "Magnetische Feldlinien." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik/artikel/magnetische-feldlinien (Abgerufen: 28. July 2025, 16:36 UTC)

Suche nach passenden Schlagwörtern

  • Magnetnadel
  • Nordpol
  • Magnet
  • Feldliniendichte
  • Feldlinienrichtung
  • Magnetische Feldlinien
  • Südpol
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Elektrisches Feld

Das elektrische Feld ist ein bestimmter Zustand des Raumes um einen geladenen Körper. Ein solches elektrisches Feld ist mit unseren Sinnesorganen nicht wahrnehmbar. Es ist aber an seinen Wirkungen erkennbar. Ein elektrisches Feld ist dadurch gekennzeichnet, dass auf andere elektrisch geladene Körper, die sich in ihm befinden, Kräfte ausgeübt werden.
Elektrische Felder können mit dem Modell Feldlinienbild veranschaulicht werden, das auf MICHAEL FARADAY (1791-1867) zurückgeht. Dabei kann man zwischen homogenen und inhomogenen Feldern unterscheiden.
Elektrische Felder können auch mit den Feldgrößen elektrische Feldstärke und dielektrische Verschiebung beschrieben werden.

Fernwirkung und Nahwirkung

Ausgehend vom coulombschen Gesetz und vom Gravitationsgesetz lag die Vermutung nahe, dass Kräfte zwischen Körpern durch den Raum übertragen werden, ohne dass ein übertragendes Medium vorhanden ist. Die Kräfte wirken unmittelbar zwischen den Körpern. Man spricht deshalb von der Fernwirkung oder auch von der Fernwirkungstheorie. Sie diente lange Zeit als Arbeitshypothese zur Erklärung der elektrischen, magnetischen und Gravitationswechselwirkungen zwischen Körpern.
MICHAEL FARADAY nahm dagegen an, dass sich durch die Anwesenheit eines Körpers der Raum selbst verändert und zum Träger physikalischer Eigenschaften wird. Kräfte werden dann durch diesen Raum vermittelt. Diese Auffassung geht also von einer Nahwirkung aus. Sie wird als Nahwirkungstheorie oder als Feldtheorie bezeichnet.

Hans Christian Oersted

* 14.08.1777 in Rudkoebing
† 09.03.1851 in Kopenhagen

Er war ein dänischer Physiker und Chemiker und war als Professor für Physik in Kopenhagen tätig. Im Jahre 1820 entdeckte er die magnetische Wirkung elektrischer Ströme und damit den Zusammenhang zwischen Elektrizität und Magnetismus.

Magnetische Flussdichte und magnetische Feldstärke

Ein magnetisches Feld kann man mit dem Modell Feldlinienbild kennzeichnen. Quantitativ lässt es sich durch die feldbeschreibenden Größen magnetische Flussdichte und magnetische Feldstärke charakterisieren. Die magnetische Flussdichte B, die heute vorzugsweise verwendet wird, ist folgendermaßen definiert:
B = F Ι ⋅ l
Die magnetische Feldstärke H ist mit der magnetischen Flussdichte folgendermaßen verknüpft:
B = μ 0 ⋅ μ r ⋅ H

Das Induktionsgesetz

Das Induktionsgesetz ist ein grundlegendes physikalisches Gesetz und die Grundlage für die Wirkungsweise solcher Geräte wie Transformatoren und Generatoren. In Worten kann man es so formulieren:
In einer Spule wird eine Spannung induziert, wenn sich das von der Spule umfasste Magnetfeld ändert. Der Betrag der Induktionsspannung ist umso größer, je schneller sich das von der Spule umfasste Magnetfeld ändert.
Eine allgemeine mathematische Formulierung des Induktionsgesetzes lautet:
U i = − N ⋅ d φ d t oder U i = − N ⋅ d ( B ⋅ A ) d t
Aus dieser allgemeinen Formulierung kann man alle wesentlichen Spezialfälle ableiten, insbesondere auch diejenigen, die der Wirkungsweise von Transformatoren und Generatoren zugrunde liegen.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025