Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.4 Elektromagnetische Schwingungen und Wellen
  5. 4.4.1 Bauelemente im Wechselstromkreis
  6. Spule

Spule

In einer Spule ist der Leitungsdraht in sehr vielen Windungen übereinander gewickelt. Jede einzelne Wicklungsschleife wirkt wie ein kreisförmiger Leiter. Die einzelnen Magnetfelder, die jede der Wicklungsschleifen umgeben, überlagern sich zu einem intensiven Gesamtfeld. Häufig befindet sich in der Spule ein Eisenkern, durch den das Magnetfeld zusätzlich verstärkt wird. Im Magnetfeld einer Spule wird Feldenergie gespeichert.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

In einer Spule ist der Leitungsdraht in sehr vielen Windungen übereinander gewickelt. Jede einzelne Wicklungsschleife wirkt wie ein kreisförmiger Leiter. Die einzelnen Magnetfelder, die jede der Wicklungsschleifen umgeben, überlagern sich zu einem intensiven Gesamtfeld. Häufig befindet sich in der Spule ein Eisenkern, durch den das Magnetfeld zusätzlich verstärkt wird. Im Magnetfeld einer Spule wird Feldenergie gespeichert.

Die Stärke des in einer Spule entstehenden Magnetfeldes hängt von der Induktivität der Spule und der durch sie fließenden Stromstärke ab. Befindet sich eine Spule im Wechselstromkreis, dann besitzt sie zusätzlich zum ohmschen Widerstand ihrer Drahtwicklungen auch noch einen induktiven Widerstand. Der induktive Widerstand einer Spule entsteht aufgrund der in ihr ablaufenden Selbstinduktion.

Technische Anwendungen von Spulen

Spulen werden hauptsächlich aus zwei Gründen eingesetzt. Sie werden verwendet, wenn man mit ihrer Hilfe starke Magnetfelder erzeugen möchte. In diesem Fall bezeichnet man die Spulen auch als Elektromagnete. Alle größeren Generatoren und Elektromotoren sind zur Magnetfelderzeugung mit Elektromagneten versehen. Auch in der Lichtmaschine des Autos befindet sich ein Elektromagnet. Elektromagnete finden weiterhin als Lastenhebemagnete und zur Werkstofftrennung - etwa in der Müllsortierung - Anwendung. Dabei nutzt man aus, dass Elektromagneten auch größere Metallgegenstände merklich anziehen, während beispielsweise Kunststoffe keiner derartigen Kraftwirkung unterliegen. Weitere Anwendungen für Elektromagnete sind verschiedene Relais, die Klingel, Transformatoren oder Lautsprecher.
Ein weiteres Einsatzgebiet von Spulen beruht auf den von ihnen ausgelösten Vorgängen der Fremd- und Selbstinduktion. Fremdinduktion nutzt man in Transformatoren. Dort wird mittels einer zweiten Spule die elektromagnetische Energie eines Primärstromkreises auf einen Sekundärstromkreis übertragen. Die Selbstinduktion, die den induktiven Widerstand einer Spule bewirkt, macht man sich in Drosselspulen zunutze.
Spulen sind ein wesentlicher Bestandteil von elektrischen Schwingkreisen.

In jeder Spule wird aufgrund der Selbstinduktion eine Spannung induziert, die nach dem lenzschen Gesetz der Ursache ihrer Entstehung - also dem Stromfluss durch die Spule - entgegenwirkt. Dadurch erfolgt eine Verringerung der Stromstärke. Somit besitzt jede Spule neben dem ohmschen Widerstand ihrer Wicklungen einen zusätzlichen Widerstand, der durch ihre Induktivität zustande kommt. Man nennt diesen Widerstand induktiven Widerstand.

Lernhelfer (Duden Learnattack GmbH): "Spule." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik/artikel/spule (Abgerufen: 09. June 2025, 01:38 UTC)

Suche nach passenden Schlagwörtern

  • Fremdinduktion
  • Schwingkreis
  • Wicklungsschleifen
  • Induktivität
  • Selbstinduktion
  • induktiver Widerstand
  • Elektromagnete
  • Leitungsdraht
  • Spule
  • Feldenergie
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Generatoren zur Schwingungserzeugung

Die elektromagnetischen Schwingungen in einem Schwingkreis klingen nach einmaliger Anregung relativ schnell wieder ab, weil elektromagnetische Energie durch den ohmschen Widerstand des Leitungsdrahtes in Wärme umgewandelt und dadurch dem Schwingkreis entzogen wird. Möchte man die Schwingung aufrechterhalten, dann muss man dem Schwingkreis im Takt der Eigenschwingung und in der richtigen Phase Energie zuführen. Das geschieht in Generatoren zur Erzeugung elektromagnetischer Schwingungen, häufig mithilfe einer meißnerschen Rückkopplungsschaltung.
Eine spezielle Art von Generatoren sind Tongeneratoren, mit denen elektromagnetische Schwingungen im hörbaren Bereich erzeugt werden.

Magnetisches Feld

Der besondere Zustand des Raumes um Dauermagnete sowie um stromdurchflossene Leiter und Spulen, in dem auf andere Magnete oder Körper aus ferromagnetischen Stoffen Kräfte ausgeübt werden, wird als magnetisches Feld bezeichnet. Solche Magnetfelder können sehr unterschiedliche Formen und verschiedene Stärken haben. Magnetische Felder können wir mit unseren Sinnesorganen nicht erfassen, sie sind nur an ihren Wirkungen erkennbar. Das gilt insbesondere auch für das ständig vorhandene, relativ schwache Magnetfeld der Erde, die ein großer Dauermagnet ist.
Magnetfelder können wie andere Arten von Feldern mithilfe von Feldlinienbildern oder feldbeschreibenden Größen charakterisiert werden. Sie können auf andere Körper einwirken, können aber auch abgeschirmt werden.

Grundversuche zur elektromagnetischen Induktion

Die elektromagnetische Induktion ist ein Vorgang, bei dem durch Bewegung eines elektrischen Leiters im Magnetfeld oder durch Änderung des von einem Leiter umschlossenen Magnetfeldes eine elektrische Spannung und ein Stromfluss erzeugt werden. Umfassend wird dieser Vorgang durch das Induktionsgesetz erfasst. Aus historischer Sicht wesentlich sind eine Reihe von Versuchen, die man als Grundversuche zur elektromagnetischen Induktion bezeichnet und mit denen gezeigt werden kann, unter welchen Bedingungen überhaupt eine Induktionsspannung entsteht und durch welche Faktoren der Betrag der Induktionsspannung beeinflusst wird. In dem Beitrag sind die wichtigsten Grundversuche zusammengestellt und erläutert. Sie waren letztlich die empirische Grundlage für die Formulierung des Induktionsgesetzes, das MICHAEL FARADAY 1831 fand.

Alexander Meißner

* 14.09.1883 in Wien
† 03.01.1958 in Berlin

Er war ein deutscher Physiker und Hochfrequenztechniker und beschäftigte sich insbesondere mit elektromagnetischen Wellen und deren Anwendungen. Bekannt wurde er vor allem durch die nach ihm benannte meißnersche Rückkopplungsschaltung zur Erzeugung hochfrequenter und ungedämpfter elektromagnetischer Schwingungen.

Hans Christian Oersted

* 14.08.1777 in Rudkoebing
† 09.03.1851 in Kopenhagen

Er war ein dänischer Physiker und Chemiker und war als Professor für Physik in Kopenhagen tätig. Im Jahre 1820 entdeckte er die magnetische Wirkung elektrischer Ströme und damit den Zusammenhang zwischen Elektrizität und Magnetismus.

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025