Direkt zum Inhalt

Pfadnavigation

  1. Startseite
  2. Physik
  3. 4 Elektrizitätslehre
  4. 4.3 Elektrische und magnetische Felder
  5. 4.3.2 Das magnetische Feld
  6. Wechselstrommotor

Wechselstrommotor

Wechselstrommotoren wandeln elektrische Energie in mechanische Energie um. Genau wie Gleichstrommotoren bestehen sie im Wesentlichen aus einem drehbar gelagerten Anker (Rotor) und einem Feldmagneten (Stator). Ausschließlich als Wechselstrommotoren gebaute Geräte verfügen aber nicht über einen Kollektor (Polwender). Wie der Name bereits sagt, werden diese Motoren mit Wechselstrom betrieben.

Schule wird easy mit KI-Tutor Kim und Duden Learnattack

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.
Jetzt 30 Tage risikofrei testen
Your browser does not support the video tag.

Wechselstrommotoren wandeln elektrische Energie in mechanische Energie um. Genau wie Gleichstrommotoren bestehen sie im Wesentlichen aus einem drehbar gelagerten Anker (Rotor) und einem Feldmagneten (Stator). Ausschließlich als Wechselstrommotoren gebaute Geräte verfügen aber nicht über einen Kollektor (Polwender). Wie der Name bereits sagt, werden diese Motoren mit Wechselstrom betrieben.

Das Arbeitsprinzip von Wechselstrommotoren

Der häufig als Elektromagnet ausgelegte Feldmagnet wird mit Gleichstrom betrieben. Steht nur eine Wechselstromquelle zur Verfügung, dann muss dieser vor der Zuleitung in die Feldspule gleichgerichtet werden. Durch die feste Stromrichtung im Feldmagneten entsteht ein konstantes Magnetfeld mit ruhenden Magnetpolen.
Durch den Anker wird hingegen Wechselstrom geleitet. Dieser Wechselstrom bewirkt die Entstehung eines Magnetfeldes, dessen Pole sich im Takt des Wechselstromes ändern. Bei der Netzfrequenz (50 Hz) polt sich das Magnetfeld des Ankers also 50-mal je Sekunde um. Dadurch wechseln auch 50-mal in einer Sekunde anziehende und abstoßende Kräfte zwischen Feldmagneten und Anker ihre Richtung. Würde man den Anker aus seiner Ruhelage heraus unter Wechselstrom setzen, dann könnte er infolge seiner Trägheit nur kleine "Zitterbewegungen" ausführen.
Versetzt man den Anker aber vor der Stromzuführung bereits in Rotationsbewegung, dann kann er bei richtiger Drehfrequenz seine Rotation fortsetzen. Dies geschieht dann, wenn der Anker in dem Moment, in dem er sich gerade am magnetischen Nordpol des Feldmagneten vorbei bewegt, infolge der Stromumpolung dort auch selbst seinen eigenen magnetischen Nordpol ausbildet. Die gleichnamigen Pole stoßen sich ab und die Drehbewegung wird fortgesetzt. Gleiches gilt für die magnetischen Südpole.
Bei der beschriebenen Bauform eines Wechselstrommotors muss der Anker mit der gleichen Freuquenz rotieren, mit der auch der elektrische Wechselstrom seine Richtung ändert. Man nennt solche Motoren Synchronmotoren.

Gleichstrommotoren als Wechselstrommotoren

Wenn man bei einem Gleichstrommotor die Anschlüsse des Feldmagneten vertauscht, dann bewegt er sich rückwärts. Vertauscht man gleichzeitig die Anschlüsse von Feldmagneten und Anker, dann behält der Gleichstrommotor seine ursprüngliche Drehrichtung bei. Ein Wechselstrom bedeutet aber nichts anderes als das ständige "Vertauschen" der Stromrichtung. Deshalb kann ein Gleichstrommotor im Grunde auch als Wechselstrommotor betrieben werden. Für praktische Zwecke hat man allerdings zu berücksichtigen, dass durch die ständige Umpolung sehr starke induktive Widerstände in den Spulen hervorgerufen werden. Dabei gilt: Je höher die Wechselstromfrequenz ist, desto größer ist der induktive Widerstand. Man muss also Gleichstrommotoren für den Betrieb unter Wechselstrom entsprechend der Netzfrequenz anpassen.
Insbesondere bei Hochleistungsmotoren bemüht man sich, Verluste durch die induktiven Widerstände der Motorspulen zu vermeiden. Deshalb betreibt zum Beispiel die Eisenbahn ein eigenes Stromnetz, dessen Netzfrequenz nur 16,66 Hz beträgt.

  • Wechselstrommotor
Lernhelfer (Duden Learnattack GmbH): "Wechselstrommotor." In: Lernhelfer (Duden Learnattack GmbH). URL: http://www.lernhelfer.de/schuelerlexikon/physik/artikel/wechselstrommotor (Abgerufen: 09. June 2025, 03:17 UTC)

Suche nach passenden Schlagwörtern

  • Wechselstrommotoren
  • Drehbewegung
  • Hochleistungsmotoren
  • Wechselstrom
  • Feldmagnet
  • Synchronmotoren
  • induktiver Widerstand
  • Anker
  • elektrische Energie
  • mechanische Energie
Jetzt durchstarten

Lernblockade und Hausaufgabenstress?

Entspannt durch die Schule mit KI-Tutor Kim und Duden Learnattack.

  • Kim hat in Deutsch, Mathe, Englisch und 6 weiteren Schulfächern immer eine von Lehrkräften geprüfte Erklärung, Video oder Übung parat.
  • 24/7 auf Learnattack.de und WhatsApp mit Bildupload und Sprachnachrichten verfügbar. Ideal, um bei den Hausaufgaben und beim Lernen von Fremdsprachen zu unterstützen.
  • Viel günstiger als andere Nachhilfe und schützt deine Daten.

Verwandte Artikel

Widerstände in Stromkreisen

Der elektrische Widerstand eines Bauelementes oder Gerätes gibt an, welche Spannung für einen elektrischen Strom der Stärke 1 A erforderlich ist. Er wird in der Einheit Ohm ( 1 Ω ) gemessen.
Befinden sich in einem Stromkreis mit einer elektrischen Quelle mehrere Bauelemente (Widerstände, Glühlampen, Spulen, ...), so können diese in Reihe oder parallel zueinander geschaltet sein. Der Gesamtwiderstand der Schaltung hängt von der Art der Schaltung und vom elektrischen Widerstand der betreffenden Bauelemente ab.

Elektrisches Feld

Das elektrische Feld ist ein bestimmter Zustand des Raumes um einen geladenen Körper. Ein solches elektrisches Feld ist mit unseren Sinnesorganen nicht wahrnehmbar. Es ist aber an seinen Wirkungen erkennbar. Ein elektrisches Feld ist dadurch gekennzeichnet, dass auf andere elektrisch geladene Körper, die sich in ihm befinden, Kräfte ausgeübt werden.
Elektrische Felder können mit dem Modell Feldlinienbild veranschaulicht werden, das auf MICHAEL FARADAY (1791-1867) zurückgeht. Dabei kann man zwischen homogenen und inhomogenen Feldern unterscheiden.
Elektrische Felder können auch mit den Feldgrößen elektrische Feldstärke und dielektrische Verschiebung beschrieben werden.

Elektrischer Widerstand

Der elektrische Widerstand eines Bauteils gibt an, wie stark der elektrische Strom in ihm behindert wird.

Formelzeichen:
Einheit:
R
ein Ohm (1 Ω )

Definiert ist der elektrische Widerstand als der Quotient aus elektrischer Spannung und elektrischer Stromstärke:

R = U I U Spannung am Bauteil I Stromstärke durch das Bauteil

Diese Gleichung wird auch als ohmsches Gesetz bezeichnet.

Fernwirkung und Nahwirkung

Ausgehend vom coulombschen Gesetz und vom Gravitationsgesetz lag die Vermutung nahe, dass Kräfte zwischen Körpern durch den Raum übertragen werden, ohne dass ein übertragendes Medium vorhanden ist. Die Kräfte wirken unmittelbar zwischen den Körpern. Man spricht deshalb von der Fernwirkung oder auch von der Fernwirkungstheorie. Sie diente lange Zeit als Arbeitshypothese zur Erklärung der elektrischen, magnetischen und Gravitationswechselwirkungen zwischen Körpern.
MICHAEL FARADAY nahm dagegen an, dass sich durch die Anwesenheit eines Körpers der Raum selbst verändert und zum Träger physikalischer Eigenschaften wird. Kräfte werden dann durch diesen Raum vermittelt. Diese Auffassung geht also von einer Nahwirkung aus. Sie wird als Nahwirkungstheorie oder als Feldtheorie bezeichnet.

Magnetische Flussdichte und magnetische Feldstärke

Ein magnetisches Feld kann man mit dem Modell Feldlinienbild kennzeichnen. Quantitativ lässt es sich durch die feldbeschreibenden Größen magnetische Flussdichte und magnetische Feldstärke charakterisieren. Die magnetische Flussdichte B, die heute vorzugsweise verwendet wird, ist folgendermaßen definiert:
B = F Ι ⋅ l
Die magnetische Feldstärke H ist mit der magnetischen Flussdichte folgendermaßen verknüpft:
B = μ 0 ⋅ μ r ⋅ H

Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025