Direkt zum Inhalt

7 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Axiomensystem, euklidische Geometrie

Das Axiomensystem bei EUKLID (und HILBERT) ist nicht willkürlich gewählt worden, sondern eine Abstraktion aus der jahrtausendelangen Erfahrungswelt des Menschen. Die dazugehörige Geometrie ist daher die Geometrie unseres Anschauungsraumes.
Bis zum Ende des 19. Jh. lag der gesamten Naturwissenschaft und Technik diese euklidische Geometrie zugrunde.

Artikel lesen

Grundbegriffe der euklidischen Geometrie

Im Axiomensystem der ebenen euklidischen Geometrie ist es gebräuchlich, die Kongruenzaxiome durch Axiome der Bewegung zu ersetzen. Bei der Betrachtung der Begriffe Bewegung und Kongruenz sind prinzipiell zwei Wege möglich.

Artikel lesen

Axiomatische Methode

In der kritischen Auseinandersetzung zur Entstehung der nichteuklidischen Geometrien, durch die die Auffassung von der Alleingültigkeit der Geometrie EUKLIDs und damit der genauen Beschreibung des realen physikalischen Raumes beseitigt wurde, hatte die axiomatische Methode zum Aufbau einer Theorie, die inzwischen Grundlage des Theorieaufbaus vieler Bereiche der modernen Mathematik ist, eine besondere Bedeutung.

Artikel lesen

Giuseppe Peano

GIUSEPPE PEANO (1858 bis 1932), italienischer Mathematiker und Logiker
* 27. August 1858 Cuneo, Piemonte
† 20. April 1932 Turin

GIUSEPPE PEANO trug entscheidend zur Weiterentwicklung der mathematischen Logik und zur Herausarbeitung der axiomatischen Methode bei. Des Weiteren wirkte er auf die Symbolik der Mengenlehre.
Von PEANO stammt das (nach ihm benannte und noch heute verwendete) Axiomensystem zum Aufbau der natürlichen Zahlen.

Artikel lesen

Giuseppe Peano

* 27. August 1858 Cuneo, Piemonte
† 20. April 1932 Turin

GIUSEPPE PEANO trug entscheidend zur Weiterentwicklung der mathematischen Logik und zur Herausarbeitung der axiomatischen Methode bei. Des Weiteren wirkte er auf die Symbolik der Mengenlehre.

Von PEANO stammt das (nach ihm benannte und noch heute verwendete) Axiomensystem zum Aufbau der natürlichen Zahlen.

Artikel lesen

Axiome der Wahrscheinlichkeitsrechnung

Die mathematische Beschreibung des Zufalls orientierte sich bis in das 20. Jahrundert hinein vor allem am Modell der Gleichverteilung.
Für den Aufbau einer umfassenden Wahrscheinlichkeitstheorie erweist sich ein solches Herangehen allerdings als zu eng. Heute wird die Wahrscheinlichkeit axiomatisch definiert. Die axiomatische Definition geht auf den russischen Mathematiker ANDREJ NIKOLAJEWITSCH KOLMOGOROW (1903 bis 1987) zurück.

Artikel lesen

Natürliche Zahlen, axiomatischer Aufbau

Neben der naiven, von Mengenvorstellungen und Anordnungen ausgehenden Gewinnung der natürlichen Zahlen oder einem streng mengentheoretisch fundierten Vorgehen ist auch ein sogenannter axiomatischer Aufbau der natürlichen Zahlen möglich. Dabei wird von Grundsätzen ausgegangen, die in ihrer Gesamtheit einleuchtend, vollständig, zueinander widerspruchsfrei und voneinander unabhängig sein müssen. Diese bilden dann ein Axiomensystem.

7 Suchergebnisse

Fächer
  • Mathematik (7)
Klassen
  • 5. Klasse (5)
  • 6. Klasse (5)
  • 7. Klasse (5)
  • 8. Klasse (5)
  • 9. Klasse (5)
  • 10. Klasse (5)
  • Oberstufe/Abitur (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025