Direkt zum Inhalt

5 Suchergebnisse

Alle Filter zurücksetzen
Artikel lesen

Funktionsbegriff

Der Funktionsbegriff ist von zentraler Bedeutung für die gesamte Mathematik und spielt auch bei Anwendungen der Mathematik in Naturwissenschaft, Technik, Wirtschaft und Gesellschaft eine wichtige Rolle. Seine Entwicklung zur heute gebräuchlichen Form hat Jahrhunderte gedauert. Die Namen bekannter Mathematiker sind mit diesem Prozess eng verbunden: LEIBNIZ verwendete 1692 erstmals das Wort Funktion, von JOHANN BERNOULLI stammt die erste Definition und auch EULER trug zur Präzisierung bei.
Unter einer Funktion f versteht man eine eindeutige Zuordnung (Abbildung), die jedem Element x aus einer Menge D eindeutig ein Element y aus einer Menge W zuordnet. D heißt der Definitionsbereich, W der Wertebereich der Funktion f. Man nennt x ∈ D ein Argument, das zugeordnete Element y ∈ W den Funktionswert von x bei der Funktion f. Als Kurzschreibweise gibt man die Funktionsgleichung u. a. in der Form y = f   ( x ) an.

Artikel lesen

Transzendente Gleichungen

Zu den transzendenten (nicht algebraischen) Gleichungen gehören die Exponentialgleichungen, Logarithmengleichungen und trigonometrische Gleichungen. Zu den algebraischen Gleichungen zählen auch die Wurzelgleichungen.

Artikel lesen

Winkelfunktionswerte, Beziehungen

Zwischen Funktionswerten der verschiedenen Winkelfunktionen bestehen vielfältige Beziehungen, deren Kenntnis für die Untersuchung theoretischer Zusammenhänge wie auch für Berechnungen sehr vorteilhaft sein können. Dies betrifft sowohl die Funktionswerte verschiedener Winkelfunktionen zu ein und demselben Argument als auch die Werte einer bestimmten Winkelfunktion für verschiedene Argumente.

Artikel lesen

Goniometrische Gleichungen mit einer Winkelfunktion

Goniometrische (trigonometrische) Gleichungen sind Gleichungen, in denen die Variable im Argument von Winkelfunktionen vorkommt. Ein allgemeines Verfahren zur direkten Bestimmung der Lösung oder der Lösungen einer goniometrischen Gleichung gibt es nicht, - oft sind die Lösungen nur durch Näherungsverfahren zu ermitteln.
Goniometrische Gleichungen mit nur einer Winkelfunktion und gleichem Argument lassen sich manchmal relativ einfach lösen (etwa indem sie durch Substitution auf algebraische Gleichungen zurückgeführt werden). Treten verschiedene Argumente auf, so kann durch Anwenden von Additionstheoremen und Winkelbeziehungen versucht werden, eine Gleichung mit Winkelfunktionen des gleichen Arguments zu erreichen.

Artikel lesen

Goniometrische Gleichungen mit mehreren Winkelfunktionen

Goniometrische (trigonometrische) Gleichungen sind Gleichungen, in denen die Variable im Argument von Winkelfunktionen vorkommt. Ein allgemeines Verfahren zum direkten Bestimmen der Lösung oder der Lösungen einer goniometrischen Gleichung gibt es nicht, - oft sind die Lösungen nur durch Näherungsverfahren zu ermitteln.
Tritt die Variable als Argument von verschiedenen Winkelfunktionen auf, so versucht man so umzuformen, dass die Gleichung auf eine solche mit nur einer Winkelfunktion reduziert wird. Bei diesen Umformungen helfen Beziehungen zwischen den Winkelfunktionen.

5 Suchergebnisse

Fächer
  • Mathematik (5)
Klassen
  • 5. Klasse (3)
  • 6. Klasse (3)
  • 7. Klasse (3)
  • 8. Klasse (3)
  • 9. Klasse (3)
  • 10. Klasse (3)
  • Oberstufe/Abitur (2)
Ein Angebot von

Footer

  • Impressum
  • Sicherheit & Datenschutz
  • AGB
© Duden Learnattack GmbH, 2025